簡易檢索 / 詳目顯示

研究生: 陳致文
Chen, Chih-Wen
論文名稱: 共摻雜鐵-銅氧化鋅薄膜之鐵磁性研究
The research of the magnetic property of ZnO:Fe,Cu thin films
指導教授: 張炎輝
Chang, Yen-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 96
中文關鍵詞: 鐵磁性稀磁半導體氧化鋅
外文關鍵詞: DMS, ZnO, ferromagnetism
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗是利用射頻磁控濺鍍(RF Magnetron Sputtering )系統成長氧化鋅薄膜於矽基板。藉由利用改變摻雜元素的量、Ar和氧氣的混合比例、Ar和氮氣的混合比例、鍍膜功率、鍍膜距離來探討不同製程參數以及經過後續退火熱處理後,對氧化鋅薄膜微結構上變化,以及對磁性的影響。
    實驗結果顯示,以矽基板成長氧化鋅薄膜可以得到在(002)結晶面上有優選方向的結構。藉由改變製程參數已經成功得到在室溫下仍然具有鐵磁性的氧化鋅薄膜,其最佳磁性質是在室溫下具飽和磁化量56.4emu/cm3的Fe0.12Cu0.02Zn0.86O初鍍膜,同時經由M-T曲線量測,發現甚至在溫度到達350K時,薄膜仍具有鐵磁性。
    至於磁性來源方面,根據探討此次實驗裡主要貢獻磁性質的機制應該來自於薄膜內的載子以及氧空孔。但薄膜內的磁性析出相是否為磁性來源機制,尚需要進一步的去證實。

    The ZnO thin films on the silicon substrate were grown by the RF magnetron sputtering system. The effect of various amount of the dopant, the flow ratio between argon and oxygen, and argon and nitrogen, sputter power, sputter distance and post annealing process on the microstructure, magnetic properities were examined.
    The experimental results show that the structures of the ZnO thin films which grow on the silicon substrate have preferiential orientation of (002). The ZnO thin films show ferromagnetic behavior at room temperature. The largest saturated magnetization(Ms) of 56.4 emu/cm3 of the as-grown Fe0.12Cu0.02Zn0.86O thin film was obtained. The as-grown thin film shows ferromagnetic behavior above 350 K.
    From experimental results, it is shown that the origin of the magnetism is from the carrier and oxygen vacavcy.But we don’t rule out the influence on the ferromagnetic behavior of the secondary phase.

    目錄 摘要...............................................................................................................Ⅰ 英文摘要.......................................................................................................Ⅱ 誌謝...............................................................................................................Ⅲ 目錄...............................................................................................................Ⅳ 表目錄......................................................................................................... Ⅷ 圖目錄...........................................................................................................Ⅸ 第一章 緒論...................................................................................................1 1-1 前言....................................................................... ..............................1 1-2 實驗動機與目的..................................................................................2 第二章 相關理論基礎...................................................................................3 2.1 氧化鋅薄膜的結構與特性..................................................................3 2-2 磁性理論........................................ ...................................................5 2-2-1 磁力矩的來源............................. ................................................5 2-2-2 磁性物質的種類........................... ..............................................6 2-2-3 磁滯曲線的產生....................... ................................................11 2.3平均場理論.........................................................................................14 2.4磁性來源的機制.................................................................................14 2.4.1 二次相(secondary phase) ...........................................................14 2.4.2載子交換作用(carrier exchange interaction) ..............................15 2.4.3和缺陷相關的束縛磁極化子模型(defect-based BMP model)...16 2.5 濺鍍理論..................................................... ......................................18 2.5.1 濺鍍法.......................................... ..............................................18 2.5.2 薄膜濺鍍率.............................. ..................................................21 2.5.3 薄膜沈積..................................... ...............................................22 第三章 實驗步驟與方法........................... .................................................24 3.1實驗流程.................................. ..........................................................24 3.2 靶材製作.................................... .......................................................25 3.3 基板準備................................. ..........................................................25 3.3.1 基板清洗.....................................................................................25 3.4 薄膜濺鍍步驟....................................................................................27 3.5 熱處理................................................................................................29 3.5.1 氮氣中退火.................................................................................29 3.5.2 不同氣氛下退火.........................................................................29 3.6 薄膜性質量測..................... ..............................................................29 3.6.1 X-Ray繞射分析........... ............................................................29 3.6.2 α-step膜厚測定.........................................................................29 3.6.3 成分及化學鍵結分析.................................................................31 3.6.4 掃描式電子顯微鏡(SEM)分析..................................................31 3.6.5 原子力顯微鏡(AFM)表面型態分析..... ....................................32 3.6.6 磁力顯微鏡(MFM)表面形貌及磁力影像量測...... ..................32 3.6.7 四點探針及霍爾量測.................................................................34 3.6.8 超導量子干涉震動磁量儀(SQUID)磁滯曲線量測..................35 第四章 結果與討論........... .......................................................................36 4.1 XRD分析............... ............................................................................36 4.1.1 Cu摻雜量的影響............ ........................................................... 36 4.1.2 氧含量的影響....................... ....................................................36. 4.1.3 氮含量的影響................... .........................................................37 4.1.4 鍍膜功率的影響.............. ..........................................................37 4.1.5 鍍膜距離的影響..................... ...................................................38 4.1.6 在氮氣中以不同溫度退火的影響.......... ..................................39 4.1.7 退火氣氛的影響........... .............................................................39 4.2 成份分析.................... .......................................................................50 4.2.1 ICP-MS和EDS分析........... ......................................................50 4.2.2化學鍵結分析.................... ............. ...........................................50 4.3 膜厚及沉積速率..................... ..........................................................55 4.3.1 Cu摻雜量的影響.........................................................................55 4.3.2 氧含量的影響.............................................................................55 4.3.3 氮含量的影響.............................................................................56 4.3.4 鍍膜功率的影響.......... ..............................................................56 4.3.5 鍍膜距離的影響...... ..................................................................56 4.4 SEM表面型態觀察............................................................................62 4.4.1 Cu摻雜量的影響.........................................................................62 4.4.2 氧含量的影響.............................................................................62 4.4.3 氮含量的影響.............................................................................63 4.4.4 鍍膜功率的影響.........................................................................63 4.4.5 鍍膜距離的影響.........................................................................63 4.4.6 退火氣氛的影響.........................................................................64 4.5 AFM表面型態觀察............................................................................72 4.6 磁性分析............................................................................................76 4.6.1 Cu摻雜量的影響.........................................................................76 4.6.2 氧含量的影響............ ................................................................76 4.6.3 氮含量的影響.............................................................................77 4.6.4 鍍膜功率的影響.........................................................................77 4.6.5 鍍膜距離的影響.........................................................................77 4.6.6 退火氣氛的影響....... .................................................................78 4.6.7 Si基板.......................................................................................78 4.6.8 M-T曲線...................................................................................79 4.7 磁性來源探究....................................................................................86 4.7.1 析出相.........................................................................................86 4.7.2 載子引致鐵磁性.........................................................................87 4.7.3 缺陷導致鐵磁性.........................................................................87 第五章 結論...............................................................................................90 參考文獻................ ......................................................................................91 自述............... ................ ..............................................................................96

    參考文獻
    1. S. Ramachandran, J. Narayan and J. T. Prater, Appl. Phys. Lett. 88, (2006) 242503.
    2. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M.O. Guillen, B. Johansson, and G. A. Gehring, Nat. Mater. 2, (2003) 673 .
    3. N. S. Norberg, K. R. Kittilstved, J. E. Amonette, R. K. Kukkadapu, D. A.Schwartz, and D. R. Gamelin, J. Am. Chem. Soc. 126, (2004) 9387.
    4. P. V. Radovanovic, N. S. Norberg, K. E. McNally, and D. R. Gamelin, J.Am. Chem. Soc. 124, (2002) 15192.
    5. D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, J. Am. Chem. Soc. 125, (2003) 13205.
    6. Dana A. Schwartz, Kevin R. Kittilstved, and Daniel R. Gamelin, Appl. Phys. Lett. 85, (2004) 1395.
    7. Z. Jin et al., Appl. Phys. Lett. 78, (2001) 3824.
    8. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, (2000) 1019.
    9. R.A. Swalin.," Thermodynamics of Solids " (1972) 335.
    10. D. Dimova-Malinovska, N. Tzenov, M. Tzolov, L.Vassilev, "Optical and electrical properties of R.F. magnetron sputtered ZnO:Al thin films" Materials Science and engineering, B52 (1998) 59-62.
    11. S.R. Morrison, " Selectivity in Semiconductor gas sensor " Sensors and Actuators, 12 (1987) 425-440.
    12. J.C Anderson, " Thin film transducers and sensors " J. Vac. Sci. Technol., A4 [3] (1986) 610-616.
    13. U. Lampe and J. Muller, "Thin-film ZnO properties and application" Ceramics Bulletin, 69 [12] (1990) 1959-65.
    14. J. G. Smits, "Design consideration of a piezoelectric-on-silicon microrobot" Sensors and Actuators, A35 (1992) 129-135.
    15. S. Akamine, T. R. Albevcht, M. J. Zdebick and C.F. Quate, Sensors and Actuators, A21-23 (1990) 964.
    16. 汪建民等,陶瓷技術手冊,經濟部技術部、中華民國粉末冶金學會、中華民國產業發展協進會出版,1994 年7月.
    17. 鄭振東,實用磁性材料,民國88年6月,全華科技圖書股份有限公司出版.
    18. 楊士瑩,“黏結劑PVA 對錳鋅鐵氧磁體粉末燒結及燒結體性質之
    影響,” 國立成功大學材料科學及工程學系碩士論文 (2001)
    19. T. Dietl , Science, 287, (2000) 1019.
    20. 吳忠益,國立清華大學工程與系統科學研究所碩士論文(2004).
    21. J.M.D. Coey, Curr. Opin. Solid State Mater. Sci. 10 (2006) 83.
    22. S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, T. Steiner, Semicond. Sci. Technol. 19 (2004) R59.
    23. M. Venkatesan, P. Stamenov, L.S. Dorneles, R.D. Gunning, B. Bernoux, J.M.D. Coey,Appl. Phys. Lett. 90 (2007) 242508.
    24. Z.W. Zhao, B.K. Tay, J.S. Chen, J.F. Hu, B.C. Lim, G.P. Li, Appl. Phys. Lett. 90 (2007)152502.
    25. M. Diaconu, H. Schmidt, A. Po‥ ppl, R. Bo‥ ttcher, J. Hoentsch, A. Rahm, H. Hochmuth,M. Lorenz, M. Grundmann, Superlattices Microstruct. 38 (2005) 413.
    26. Y.M. Cho, W.K. Choo, H. Kim, D. Kim, Y.E. Ihm, Appl. Phys. Lett. 80 (2002) 3358.
    27. H.J. Lee, S.Y. Jeong, C.R. Cho, C.H. Park, Appl. Phys. Lett. 81 (2002) 4020.
    28. Z. Yin, N. Chen, C. Chai, F. Yang, J. Appl. Phys. 96 (2004) 5093.
    29. C. Song, S.N. Pan, X.J. Liu, X.W. Li, F. Zeng, W.S. Yan, B. He, F. Pan, J. Phys.: Condens.Matter 19 (2007) 176229.
    30. X.-L. Li, Z.-L. Wang, X.-F. Qin, H.-S. Wu, X.-H. Xu, G.A. Gehring,
    J.Appl. Phys. 103(2008) 023911.
    31. X.X. Wei, C. Song, K.W. Geng, F. Zeng, B. He, F. Pan, J. Phys.:
    Condens. Matter 18(2006) 7471.
    32. C. Sudakar, J.S. Thakur, G. Lawes, R. Naik, V.M. Naik, Phys. Rev. B
    75 (2007) 054423.
    33. S.R. Shinde, S.B. Ogale, S. Das Sarma, J.R. Simpson, H.D. Drew, S.E.Lofland, C.Lanci, J.P. Buban, N.D. Browning, V.N. Kulkarni, J. Higgins, R.P. Sharma, R.L.Greene, T. Venkatesan, Phys. Rev. B 67 (2003) 115211.
    34. Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A.Setzer, P. Esquinazi, C. Meinecke, M. Grundmann, Appl. Phys. Lett. 92 (2008) 082508.
    35. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287 (2000) 1019.
    36. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39 (2000) L555.
    37. K. Kikoin, V. Fleurov, Phys. Rev. B 74 (2006) 174407.
    38. R. Janisch, P. Gopal, N.A. Spaldin, J. Phys.: Condens. Matter 17 (2005) R657.
    39. J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, J. Appl. Phys. 92 (2002) 6066.
    40. X.C. Liu, E.W. Shi, Z.Z. Chen, H.W. Zhang, B. Xiao, L.X. Song, Appl. Phys. Lett. 88(2006) 252503.
    41. A.J. Behan, A. Mokhtari, H.J. Blythe, D. Score, X.-H. Xu, J.R. Neal, A.M. Fox, G.A.Gehring, Phys. Rev. Lett. 100 (2008) 047206.
    42. C. Song, S.N. Pan, X.J. Liu, X.W. Li, F. Zeng, W.S. Yan, B. He, F. Pan, J. Phys.: Condens.Matter 19 (2007) 176229.
    43. C. Song, X.J. Liu, K.W. Geng, F. Zeng, F. Pan, B. He, S.Q. Wei, J. Appl. Phys. 101(2007) 103903.
    44. N.H. Hong, V. Brize’ , J. Sakai, Appl. Phys. Lett. 86 (2005) 082505.
    45. X.J. Liu, C. Song, F. Zeng, F. Pan, J. Phys.: Condens. Matter 19 (2007) 296208.
    46. M. Ivill, S.J. Pearton, D.P. Norton, J. Kelly, A.F. Hebard, J. Appl. Phys. 97 (2005) 053904.
    47. M. Ivill, S.J. Pearton, Y.W. Heo, J. Kelly, A.F. Hebard, D.P. Norton, J.Appl. Phys. 101(2007) 123909.
    48. X.-C. Liu, E.-W. Shi, Z.-Z. Chen, H.-W. Zhang, B.-Y. Chen, L.-X. Song, S.-Q. Wei, B.He, Z. Xie, J. Crystal growth 307 (2007) 14.
    49. 戴道生、錢昆明等等,鐵磁學,科學出版社 (2000)
    50. Donald L. Smith, “Thin Film Depositopn”, McGraw-Hill, Inc (1995) , p119.
    51. Donald L. Smith, “Thin Film Depositopn”, McGraw-Hill, Inc (1995) , p119.
    52. 莊達人,“VLSI 製造技術”,高立圖書有限公司 (1999),p545.
    53. 林瑞陽,“真空濺鍍及其工業應用”,台大慶齡工業中心演講,第四章 (1995).
    54. John A. Thormton, “Influence of Apparatus Geometry andDeposition Conditions on the Structure and Topography of Thick Sputtered Coatings”, Journal of Vacuum Science Technology, Vol.11,No.4 (1974) , p666.
    55. John A. Thormton, “Influence of Substrate Temperature and Deposition Rate on Structure of Thick Sputtered Cu Coatings”,Journal of Vacuum Science Technology, Vol.12, No.4 (1975) , p830.
    56. D.R. Sahu , Jow-Lay Huang,“The properties of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere”, Thin Solid Films 516 (2007) 208–211.
    57. A J Chen, X M Wu, Z D Sha, L J Zhuge and YDMeng,” Structure and photoluminescence properties of Fe-doped ZnO thin films”, J. Phys. D: Appl. Phys. 39 (2006) 4762–4765.
    58. D Chakraborti, G R Trichy, J T Prater and J Narayan,” The effect of oxygen annealing on ZnO:Cu and ZnO: (Cu,Al) diluted magnetic semiconductors”, J. Phys. D: Appl. Phys. 40 (2007) 7606–7613
    59. D. L. Hou, X. J. Ye,H. J. Meng, H. J. Zhou, X. L. Li, C. M. Zhen, and
    G. D. Tang,” Magnetic properties of n-type Cu-doped ZnO thin films”, APPLIED PHYSICS LETTERS ,90, (2007) 142502.
    60. Bao Huang, Deliang Zhu , Xiaocui Ma,””Great influence of the oxygen vacancies on the ferromagnetism in the Co-doped ZnO films”, Applied Surface Science 253 (2007) 6892–6895.
    61. D. L. Hou,_ X. J. Ye, X. Y. Zhao, H. J. Meng, H. J. Zhou, X. L. Li, and C. M. Zhen “Room-temperature ferromagnetism in n-type Cu-doped ZnO thin films”, J. Appl. Phys. 102, (2007) 033905.
    62. Y.Natsume, H. Sakata, Mater. Chem. Phys., 78, (2002) 170.
    63. D Chakraborti, G R Trichy, J T Prater and J Narayan,”The effect of oxygen annealing on ZnO : Cu and ZnO : (Cu,Al) diluted magnetic semiconductors”, J. Phys. D: Appl. Phys. 40 (2007) 7606–761.

    無法下載圖示 校內:2014-07-14公開
    校外:2108-07-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE