| 研究生: |
馮展睿 Feng, Chan-Jui |
|---|---|
| 論文名稱: |
使用STAR探測器研究J/psi與psi(2S)粒子在510 GeV質子-質子對撞下的生成機制 Measurements of the production cross sections of J/psi and psi(2S) in p+p collisions at 510 GeV from STAR experiment |
| 指導教授: |
楊毅
Yang, Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | RHIC 、STAR 、Quarkonium 、J/ψ 、ψ(2S) 、cross sections |
| 外文關鍵詞: | RHIC, STAR, Quarkonium, J/ψ, ψ(2S), cross sections |
| 相關次數: | 點閱:170 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在重離子-重離子對撞中,藉由測量名為J/ψ 以及ψ(2S) 的夸克偶素的截面,可以提供我們豐富資訊來了解尚未明朗的夸克偶素的生成截面機制。STAR 是高能核物理實驗中位於相對論性重離子對撞機的主要實驗之一。我們藉由渺子探測器提供的觸發以及辨識渺子的功能去研究夸克偶素衰變到渺子-渺子對的過程,這個過程相比於衰變到電子-電子對,在探測器上具有比較小的軔致輻射能量損失,這項特性使我們能夠更精確的測量訊號。在這篇論文中,我們利用STAR 2017 年質子-質子510 GeV 對撞實驗的資料中測量了J/ψ 以及ψ(2S) 的微分截面以及ψ(2S) 衰變至J/ψ 的比例隨著橫向動量的變化。這是STAR 實驗中,第一次測量ψ(2S) 微分截面以及ψ(2S) 衰變到J/ψ 的比例隨著橫向動量的變化我們將測量結果與非相對論性量子色動力學(Non-Relativistic Quantum Chromodynamics) 以及改進的顏色蒸發模型(Improved Color Evaporation Model) 進行比較。
Measurements of the production cross sections of charmonia, namely J/ψ and ψ(2S), in hadron+hadron collisions provide valuable information about yet unsolved questions on the production cross section mechanisms of quarkonium. The Solenoid Tracker At RHIC (STAR) is one of the major highenergy nuclear physics experiment at the Relativistic Heavy Ion Collider. The Muon Telescope Detector, which provides trigger and identification capability for muons, enables to study quarkonia in the μ+ μ− decay channel which is less affected than the e+ e− channel by bremsstrahlung energy loss in the detector material, this feature allows us to measure the signal more accurately. In this thesis, we report on the measurements of production cross section, as well as their ratio as a function of pT in p+p collisions at √s = 510 GeV using data recorded in 2017 by the STAR experiment. It is the first differential measurement of the ψ(2S) differential cross section and ψ(2S) to the J/ψ yield ratio as a function of pT from STAR. The results are compared with the prediction from the Non-Relativistic Quantum Chromodynamics and Improved Color Evaporation Model.
[1] K. Olive et al., “Review of Particle Physics,” Chin. Phys. C, vol. 38, p. 090001, 2014.
[2] A. Mocsy, P. Petreczky, and M. Strickland, “Quarkonia in the Quark Gluon Plasma,” Int. J. Mod. Phys. A, vol. 28, p. 1340012, 2013.
[3] M. Krämer, “Quarkonium production at high energy colliders,” Prog. Part. Nucl. Phys., vol. 47, pp. 141–201, 2001.
[4] S. Chatrchyan et al., “J/ψ and ψ2S production in pp collisions at √s = 7 TeV,” JHEP, vol. 02, p. 011, 2012.
[5] S. Acharya et al., “Measurement of the inclusive J/ ψ polarization at forward rapidity in pp collisions at √s = 8 TeV,” Eur. Phys. J. C, vol. 78, no. 7, p. 562, 2018.
[6] J. Adam et al., “Measurements of the transverse momentum dependent cross sections of J/ψ production at mid-rapidity in proton+proton collisions at √s = 510 and 500 GeV with the STAR detector,” Phys. Rev. D, vol. 100, no. 5, p. 052009, 2019.
[7] “The Frontiers of Nuclear Science, A Long Range Plan,” 9 2008.
[8] J. Adam et al., “J/ψ suppression at forward rapidity in Pb-Pb collisions at √s NN = 5.02 TeV,” Phys. Lett. B, vol. 766, pp. 212–224, 2017.
[9] A. M. Sirunyan et al., “Measurement of nuclear modification factors of Υ(1S), Υ(2S), and Υ(3S) mesons in PbPb collisions at √s NN = 5.02 TeV,” Phys. Lett. B, vol. 790, pp. 270–293, 2019.
[10] C. Montag, “eRHIC an electronion collider at BNL,” PoS, vol. SPIN2018, p. 158, 2019.
[11] D. Arkhipkin and J. Lauret, “Star online metadata collection framework: Integration with the pre-existing controls infrastructure,” Journal of Physics: Conference Series, vol. 898, p. 032023, 10 2017.
[12] W. Llope et al., “The STAR Vertex Position Detector,” Nucl. Instrum. Meth. A, vol. 759, pp. 23–28, 2014.
[13] M. Anderson et al., “The Star time projection chamber: A Unique tool for studying high multiplicity events at RHIC,” Nucl. Instrum. Meth. A, vol. 499, pp. 659–678, 2003.
[14] TPC, https://www.star.bnl.gov/public/tpc/tpc.html.
[15] P. Krizan, “Overview of particle identification techniques,” Nucl. Instrum. Meth. A, vol. 706, pp. 48–54, 2013.
[16] Y. Wang, Q. Zhang, D. Han, F. Wang, Y. Yu, P. Lyu, and Y. Li, “Status of technology of MRPC time of flight system,” JINST, vol. 14, no. 06, p. C06015, 2019.
[17] L. Ruan et al., Perspectives of a Midrapidity Dimuon Program at RHIC: A Novel and Compact Muon Telescope Detector, 2009.
[18] Y.Q. Ma and R. Venugopalan, “Comprehensive Description of J/ψ Production in ProtonProton Collisions at Collider Energies,” Phys. Rev. Lett., vol. 113, no. 19, p. 192301, 2014.
[19] Y.Q. Ma, K. Wang, and K.T. Chao, “J/ψ(ψ′) production at the Tevatron and LHC at O(α4 sv4) in non-relativistic QCD,” Phys. Rev. Lett., vol. 106, p. 042002, 2011.
[20] Y.Q. Ma and R. Vogt, “Quarkonium Production in an Improved Color Evaporation Model,” Phys. Rev.D, vol. 94, no. 11, p. 114029, 2016.
[21] F. Abe et al., “J/ψ and ψ(2S) production in p¯p collisions at √s = 1.8 TeV,” Phys. Rev. Lett., vol. 79, pp. 572–577, 1997.
[22] A. Adare et al., “Measurement of the relative yields of ψ(2S) to ψ(1S) mesons produced at forward and backward rapidity in p+p, p+Al, p+Au, and 3He+Au collisions at √sNN = 200 GeV,” Phys. Rev. C, vol. 95, no. 3, p. 034904, 2017.
[23] I. Abt et al., “A Measurement of the ψ′ to J/ψ production ratio in 920-GeV protonnucleus interactions, Eur. Phys. J. C, vol. 49, pp. 545–558, 2007.
[24] G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B, vol. 716, pp. 1–29, 2012.
[25] J. Aubert et al., “Experimental Observation of a Heavy Particle J,” Phys. Rev. Lett., vol. 33, pp. 1404–1406, 1974.
[26] J. Augustin et al., “Discovery of a Narrow Resonance in e+e− Annihilation,” Phys. Rev. Lett., vol. 33, pp. 1406–1408, 1974.
[27] G. Abrams et al., “The Discovery of a Second Narrow Resonance in e+ eAnnihilation,”Phys. Rev. Lett., vol. 33, pp. 1453–1455, 1974.
[28] G. C. Nayak, J.W. Qiu, and G. F. Sterman, “NRQCD Factorization and Velocity-dependence of NNLO Poles in Heavy Quarkonium Production,” Phys. Rev. D, vol. 74, p. 074007, 2006.
[29] G. Li, S. Wang, M. Song, and J. Lin, “Prompt heavy quarkonium production in association with a massive
(anti)bottom quark at the LHC,” Phys. Rev. D, vol. 85, p. 074026, 2012.
[30] G. T. Bodwin, E. Braaten, and J. Lee, “Comparison of the colorevaporation model and the NRQCD factorization approach in charmonium production,” Phys. Rev. D, vol. 72, p. 014004, 2005.
[31] S. Chatrchyan et al., “The CMS Experiment at the CERN LHC,” JINST, vol. 3, p. S08004, 2008.
[32] K. Aamodt et al., “The ALICE experiment at the CERN LHC,” JINST, vol. 3, p. S08002, 2008.
[33] R. Gupta, “Introduction to lattice QCD: Course,” in Les Houches Summer School in Theoretical Physics, Session 68: Probing the Standard Model of Particle Interactions, 7 1997, pp. 83–219.
[34] F. Bergsma et al., “The STAR detector magnet subsystem,” Nucl. Instrum. Meth. A, vol. 499, pp. 633–639, 2003.
[35] A. Akindinov et al., “Performance of the ALICE Time-Of-Flight detector at the LHC,” Eur. Phys. J. Plus, vol. 128, p. 44, 2013.
[36] Y.F. Xu, J.H. Chen, Y.G. Ma, A.H. Tang, Z.B. Xu, and Y.H. Zhu, “Physics performance of the STAR zero degree calorimeter at relativistic heavy ion collider,” Nucl. Sci. Tech., vol. 27, no. 6, p. 126, 2016.
[37] C. Whitten, “The beambeam counter: A local polarimeter at STAR,” AIP Conf. Proc., vol. 980, no. 1, pp. 390–396, 2008.
[38] G. Aad et al., “Measurement of the differential cross-sections of inclusive, prompt and non-prompt J/ψ production in proton-proton collisions at √s = 7 TeV,” Nucl. Phys. B, vol. 850, pp. 387–444, 2011.1
[39] S. Das, “A simple alternative to the Crystal Ball function,” 2016.