| 研究生: |
周正文 Chou, Cheng-Wen |
|---|---|
| 論文名稱: |
AZ80鎂合金在不同溫度下之撞擊特性與微觀結構分析 Impact Deformation and Microstructural Evolution of AZ80 Magnesium Alloy under Various Temperatures |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | AZ80鎂合金 、霍普金森桿 、高應變速率 、滑移帶 、脆性破壞 、差排 |
| 外文關鍵詞: | AZ80 magnesium, split-Hopkinson bar, high strain rate, slip band, brittle fracture, dislocations |
| 相關次數: | 點閱:97 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係利用壓縮式霍普金森高速撞擊試驗機(Split Hopkinson pressure bar)及溫度調控裝置,探討在不同溫度及應變速率下AZ80鎂合金之撞擊特性與微觀結構。圓柱形試片於實驗溫度-100℃、25℃及300℃,及應變速率800s-1、1500s-1、2200s-1條件下進行測試,以分析溫度以及應變速率對鎂合金塑變行為與微觀結構之影響。
實驗結果顯示,溫度和應變速率對AZ80鎂合金之機械性質影響甚巨。在相同溫度條件下,其塑流應力值、加工硬化率,應變速率敏感性係數及溫度敏感性係數均會隨應變速率之增加而上升,而熱活化體積及活化能則會下降。相反地,在相同應變速率條件下,其塑流應力值、加工硬化率、應變速率敏感性係數及溫度敏感性係數隨溫度之增加而下降,而熱活化體積以及活化能則會上升。此外,藉由Zerilli-Armstrong構成方程式,來準確的預測AZ80鎂合金在不同溫度及應變速率下的塑變行為。
在微觀方面,由光學顯微鏡之觀測可知AZ80鎂合金在高速荷載下產生滑移變形,且受溫度與應變速率影響,晶相形貌及相組成體積百分比亦隨之改變;在掃描式電子顯微鏡之觀察結果顯示,肇因於此合金為HCP晶格結構,其破斷面為脆性破壞,而隨著β相提升,破斷面之韌性破壞會隨之提升;另在穿透式電子顯微鏡下則可觀測到差排密度隨著應變速率上升和溫度降低而隨之增加,差排密度的平方根與塑流應力值作線性關係上升。最後結合巨觀機械性質與微觀結構結果證實了差排密度、塑流應力值、應變速率敏感性係數及熱活化體積有重要的相關性。
In this study, a spit-Hopkinson bar is utilized to investigate the effect of temperature and strain rate on impact response and microstructural characteristics of AZ80 magnesium alloy at different temperatures of -100℃, 25℃and 300℃, under strain rates of 800s-1,1500s-1 and 2200s-1, respectively.
The experimental results indicate that the mechanical properties are related to temperature and strain rate. At a constant temperature, flow stress, work hardening rate, strain rate sensitivity and temperature sensitivity all increase with the increasing strain rate, while the thermal activation volume and activation energy decreases. However, at a constant strain rate, flow stress, work hardening rate, strain rate sensitivity, and temperature sensitivity decrease with increasing temperature, while the thermal activation volume and activation energy increases. In addition, the observed impact deformation behavior of AZ80 magnesium alloy under current testing conditions can be described by the Zerilli-Armstrong equation.
Optical microstructural observations reveal that the formation of slip band and morphology of deformed grain of Z80 magnesium alloy are strongly dependent on temperature and strain rate. The SEM fracture analysis results indicate that due to the presence of HCP structure, the fracture surfaces of the deformed AZ80 magnesium specimens are dominated by cleavage feature. However, the ductile fracture is found to increase with increasing β phase. TEM observations show that the dislocation density increases with increasing strain rate, but decreases with increasing temperature. A linear relationship between the flow stress and square root dislocation density is observed. Finally, the flow stress, strain rate sensitivity and thermal activation volume are related to the observed dislocation substructure.
1. B.L. Mordike and T. Ebert, Magnesium: Properties applications potential. Materials Science and Engineering: A, 2001. 302(1): p. 37-45.
2. H. Kolsky, An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society. Section B, 1949. 62(11): p. 676.
3. F.E. Hauser, Techniques for measuring stress-strain relations at high strain rates. Experimental Mechanics, 1966. 6(8): p. 395-402.
4. G.R. Johnson and W.H. Cook. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. in Proceedings of the 7th International Symposium on Ballistics. 1983. The Netherlands.
5. 葉哲政, 2006 非鐵金屬年鑑 鎂合金篇 原料市場分析. 2006: 金屬中心.
6. Michael M Avedesian and H. Baker, ASM Speciality Handbook - Magnesium and Magnesium Alloys. 1999: ASM International.
7. S. Kamado, 日本鎂合金工業現況及研究趨勢. 2001: 台灣鎂合金協會.
8. M. Yoo, S. Agnew, J. Morris, and K. Ho, Non-basal slip systems in HCP metals and alloys: source mechanisms. Materials Science and Engineering: A, 2001. 319: p. 87-92.
9. 賴耿陽, 非鐵金屬材料. 1998: 復漢出版社.
10. Magnesium Alloys, Metals Handbook 9th Edition. Vol. 6. 1985: ASM.
11. G.L. Song and A. Atrens, Corrosion mechanisms of magnesium alloys. Advanced engineering materials, 1999. 1(1): p. 11-33.
12. D. Curran, L. Seaman, and D. Shockey, Linking dynamic fracture to microstructural processes, in Shock Waves and High-Strain-Rate Phenomena in Metals. 1981, Springer. p. 129-167.
13. U. Lindholm and L. Yeakley, High strain-rate testing: tension and compression. Experimental Mechanics, 1968. 8(1): p. 1-9.
14. M.A. Meyers, Dynamic behavior of materials. 1994: John Wiley & Sons.
15. Y. Bai and B. Dodd, Adiabatic Shear Localization: Occurrence, Theories and Applications, 1992. Pergamon Press, Oxford.
16. K.F. Graff, Wave motion in elastic solids. 1975: Courier Dover Publications.
17. W.S. Lee and C.F. Lin, Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Materials Science and Engineering: A, 1998. 241(1): p. 48-59.
18. J. Campbell, Dynamic plasticity: macroscopic and microscopic aspects. Materials Science and Engineering, 1973. 12(1): p. 3-21.
19. D. Klahn, A. Mukherjee, and J. Dorn, Proceedings of the Second International Conference on the Strength of Metals and Alloys. 1970.
20. B. Jd Campbell and A. Dowling, The behaviour of materials subjected to dynamic incremental shear loading. Journal of the Mechanics and Physics of Solids, 1970. 18(1): p. 43-63.
21. A. Seeger, Dislocation and Mechanical Properties of Crystals, 1957. p. 243. John Wiley and Sons, Inc., New York.
22. H. Conrad, Thermally activated deformation of metals. JOM, 1964. 16(7): p. 582-588.
23. M. Meyers, D. Benson, O. Vöhringer, B. Kad, Q. Xue, and H.H. Fu, Constitutive description of dynamic deformation: physically-based mechanisms. Materials Science and Engineering: A, 2002. 322(1): p. 194-216.
24. W. Ferguson, A. Kumar, and J. Dorn, Dislocation damping in aluminum at high strain rates. Journal of Applied Physics, 2004. 38(4): p. 1863-1869.
25. J. Campbell and W. Ferguson, The temperature and strain-rate dependence of the shear strength of mild steel. Philosophical Magazine, 1970. 21(169): p. 63-82.
26. Z. Gronostajski, The constitutive equations for FEM analysis. Journal of Materials Processing Technology, 2000. 106(1): p. 40-44.
27. P. Ludwik, Elemente der technologischen Mechanik. 1909: J. Springer.
28. T. Vinh, M. Afzali, and A. Roche, Fast fracture of some usual metals at combined high strain and high strain rate. Proceedings of ICM3, 1979. 2: P.633-642.
29. H. Kobayashi and B. Dodd, A numerical analysis for the formation of adiabatic shear bands including void nucleation and growth. International journal of impact engineering, 1989. 8(1): p. 1-13.
30. H. Kobayashi and B. Dodd, Formation of adiabatic shear bands in steel and titanium twisted at dynamic rates. J. Jpn. Soc. Technol. Plast., 1988. 29(334): p. 1152-1158.
31. R. Liang and A.S. Khan, A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. International Journal of Plasticity, 1999. 15(9): p. 963-980.
32. F. Zerilli and R. Armstrong, The effect of dislocation drag on the stress-strain behavior of FCC metals. Acta Metallurgica et Materialia, 1992. 40(8): p. 1803-1808.
33. F.J. Zerilli and R.W. Armstrong, Constitutive equation for HCP metals and high strength alloy steels. High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials, 1995: p. 121-126.
34. L. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger, and K. Staudhammer, A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study. Journal of materials processing technology, 2007. 182(1): p. 319-326.
35. D. Umbrello, R. M’saoubi, and J. Outeiro, The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. International Journal of Machine Tools and Manufacture, 2007. 47(3): p. 462-470.
36. U. Andrade, M. Meyers, and A.H. Chokshi, Constitutive description of work-and shock-hardened copper. Scripta metallurgica et materialia, 1994. 30(7): p. 933-938.
37. J. Lifshitz and H. Leber, Data processing in the split Hopkinson pressure bar tests. International Journal of Impact Engineering, 1994. 15(6): p. 723-733.
38. W. Zhou, T. Long, and C. Mark, Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D. Materials Science and Technology, 2007. 23(11): p. 1294-1299.
39. W.-S. Lee and T.-H. Chen, Dynamic deformation behaviour and microstructural evolution of high-strength weldable aluminum scandium (Al-Sc) alloy. Materials transactions, 2008. 49(6): p. 1284-1293.
40. S. Esmaeili, L. Cheng, A. Deschamps, D. Lloyd, and W. Poole, The deformation behaviour of AA6111 as a function of temperature and precipitation state. Materials Science and Engineering: A, 2001. 319: p. 461-465.
41. B. Viguier, Dislocation densities and strain hardening rate in some intermetallic compounds. Materials Science and Engineering: A, 2003. 349(1): p. 132-135.
42. D. Chu and J. Morris Jr, The influence of microstructure on work hardening in aluminum. Acta materialia, 1996. 44(7): p. 2599-2610.
43. W.Q. Song, P. Beggs, and M. Easton, Compressive strain-rate sensitivity of magnesium–aluminum die casting alloys. Materials & Design, 2009. 30(3): p. 642-648.
44. H. Conrad and H. Wiedersich, Activation energy for deformation of metals at low temperatures. Acta Metallurgica, 1960. 8(2): p. 128-130.
45. L. Shi and D. Northwood, The mechanical behavior of an AISI type 310 stainless steel. Acta metallurgica et materialia, 1995. 43(2): p. 453-460.
46. J. Jain, J. Zou, W. Poole, and C. Sinclair, Effect of precipitates on deformation mechanisms at low temperature in an AZ80 magnesium alloy. Magnesium Technology. San Francisco: TMS, 2009: p. 503-508.
47. L.E. Malvern, The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1951. 18(2): p. 203-208.
48. R. Mcdonald and D. Stull, Heat Content, Specific Heat, and Heat of Melting of Magnesium Alloy AZ-80 from 280° to 1080° K. Journal of Chemical and Engineering Data, 1961. 6(4): p. 609-610.
49. A. Ammouri and R. Hamade, On the selection of constitutive equation for modeling the friction stir processes of twin roll cast wrought AZ31B. Materials & Design, 2014. 57: p. 673-688.
50. J.B. Clark, Age hardening in a Mg-9 wt.% Al alloy. Acta Metallurgica, 1968. 16(2): p. 141-152.
51. S. Celotto, TEM study of continuous precipitation in Mg–9 wt% Al–1 wt% Zn alloy. Acta materialia, 2000. 48(8): p. 1775-1787.
52. C. Lv, T. Liu, D. Liu, S. Jiang, and W. Zeng, Effect of heat treatment on tension–compression yield asymmetry of AZ80 magnesium alloy. Materials & Design, 2012. 33: p. 529-533.
53. J. Jain, W. Poole, and C. Sinclair, A study on the static recrystallization of cold rolled magnesium alloy AZ80. Magnesium Technology. San Antonio: TMS, 2006: p. 147-152.
54. P. Wang, C. Lin, T. Huang, H. Lin, Y. Lee, M. Yeh, and J. Wang, Effects of 2 mass% Li addition on the AZ80 Mg alloy. Materials transactions, 2008. 49(5): p. 913-917.
55. R. Ham, The determination of dislocation densities in thin films. Philosophical Magazine, 1961. 6(69): p. 1183-1184.
56. P. Trivedi, D.P. Field, and H. Weiland, Alloying effects on dislocation substructure evolution of aluminum alloys. International Journal of Plasticity, 2004. 20(3): p. 459-476.
57. J. Jain, W.J. Poole, and C.W. Sinclair, The deformation behaviour of the magnesium alloy AZ80 at 77 and 293K. Materials Science and Engineering: A, 2012. 547(0): p. 128-137.
58. Y. Uematsu, T. Kakiuchi, T. Teratani, Y. Harada, and K. Tokaji, Improvement of corrosion fatigue strength of magnesium alloy by multilayer diamond-like carbon coatings. Surface and Coatings Technology, 2011. 205(8–9): p. 2778-2784.