簡易檢索 / 詳目顯示

研究生: 蔡佳蓁
Tsai, Chia-Chen
論文名稱: 藉由平行影像技術與興趣體積加速大腦組織磁化率定量掃描
Accelerating cerebral QSM scan via focusing volume of interest and parallel imaging
指導教授: 吳明龍
Wu, Ming-Long
趙梓程
Chao, Tzu-Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 50
中文關鍵詞: 組織磁化率磁振造影QSM平行影像部分腦部體積涵蓋
外文關鍵詞: tissue susceptibility, MRI, QSM, parallel imaging, partial brain coverage
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Quantitative susceptibility mapping (QSM) 在監測組織的磁特性上已經是一個有用的工具。傳統的腦部QSM需要涵蓋全腦以及有足夠的解析度,因此會需要較長的掃描時間以及導致在實際臨床應用上的限制。
    在我們的研究中,Generalized Autocalibraing Partially Parallel Acquisition (GRAPPA) 和部分體積涵蓋範圍來實現影像擷取時間的減少。另外,部分腦體積涵蓋範圍包括二分之一涵蓋範圍以及四分之一涵蓋範圍。Projection onto Dipole Field (PDF) 方法是根據ROI外部的背景偶極場和Region of interest (ROI) 內的局部偶極場的內積幾乎為零,除了ROI邊界附近的局部偶極場。因此,ROI邊界附近的估算是不准確的。本研究透過數值模擬以及人類受試者資料模擬來探討在切面方向的錯誤邊界範圍以及在特定ROI上的準確性。為了評估GRAPPA和部分腦涵蓋範圍的品質,進行人類受試者實驗並分析特定ROI的重建的磁化率 (susceptibility)。因此,應用在QSM上,二分之一腦涵蓋範圍,GRAPPA以及它們的組合在縮短掃描時間上是合適的選擇。

    Quantitative susceptibility mapping has been a useful tool to monitor magnetic properties of the tissues. Conventional cerebral QSM requires 3D whole brain coverage and spatial resolution, leading long scan time and also limiting its application in clinical practice.
    In this study, Generalized Autocalibraing Partially Parallel Acquisition (GRAPPA) and partial volumetric coverage are used to implement reduction of acquisition time. In addition, partial brain coverages are including half and quarter coverages here. The Projection onto Dipole Field (PDF) method processes due to the basis that the inner product of the field of a background dipole outside the ROI and the field of a local dipole inside the ROI is almost zero except for the local dipole near the ROI boundary. Therefore, the estimation near the ROI boundary is inaccurate. Numerical simulation and human subject simulation were performed to investigate the error bounday along slices and also the accuracy of specific ROIs. To assess the quality of GRAPPA and partial brain coverage, human subject experiment was performed and the reconstructed susceptibility values of specific ROIs were analyzed. Consequently, half brain coverage, GRAPPA and also their combination in QSM are suitable options to shorten scanning time.

    Contents 中文摘要 i Abstract ii 誌謝 iii Chapter 1 Introduction 1 1.1 Brain disease and MRI 1 1.2 Susceptibility weighted imaging (SWI) and Quantitative Susceptibility Mapping (QSM) 2 1.3 Parallel imaging 3 1.4 Partial coverage of interest 5 Chapter 2 Theory and method 6 2.1 Quantitative Susceptibility Mapping (QSM) 6 2.1.1 Field distribution estimation 6 2.1.2 Dipole model and magnetic field deconvolution 7 2.1.3 Background field removal 8 2.1.4 QSM generation and regularization 9 2.2 Acceleration by GRAPPA and partial coverage of brain 11 2.2.1 Generalized autocalibrating partially parallel acquisitions (GRAPPA) 11 2.2.2 Different kernels in GRAPPA 14 2.3 Experiment design 16 2.3.1 Numerical simulation 16 2.3.2 Human subject simulation 18 2.3.3 Human subject experiment 19 Chapter 3 Results 21 3.1 Numerical simulation 21 3.1.1 Error boundary of PDF method 21 3.1.2 Partial coverage comparing to whole coverage 23 3.2 Human subject simulation 26 3.3 Human subject experiment 37 Chapter 4 Discussion 46 4.1 Partial coverage of brain used on QSM 46 4.2 QSM with GRAPPA 47 4.3 Future work 48 Reference 49

    [1] Miller, D.B. and J.P. O’Callaghan, Biomarkers of Parkinson’s disease: Present and future. Metabolism, 2015. 64(3, Supplement 1): p. S40-S46.
    [2] Alegre, M. and M. Valencia, Oscillatory activity in the human basal ganglia: More than just beta, more than just Parkinson's disease. Experimental Neurology, 2013. 248(Supplement C): p. 183-186.
    [3] Glatz, A., et al., Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects. NeuroImage, 2013. 82(Supplement C): p. 470-480.
    [4] Guo, L.F., et al., Quantification of Phase Values of Cerebral Microbleeds in Hypertensive Patients Using ESWAN MRI. Clinical Neuroradiology, 2013. 23(3): p. 197-205.
    [5] Haacke, E.M., et al., Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1. AJNR. American journal of neuroradiology, 2009. 30(1): p. 19-30.
    [6] Haacke, E.M., et al., Susceptibility weighted imaging (SWI). Magnetic Resonance in Medicine, 2004. 52(3): p. 612-618.
    [7] Mittal, S., et al., Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 2. AJNR. American journal of neuroradiology, 2009. 30(2): p. 232-252.
    [8] Schweser, F., et al., Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Medical Physics, 2010. 37(10): p. 5165-5178.
    [9] Wang, Y. and T. Liu, Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magnetic Resonance in Medicine, 2015. 73(1): p. 82-101.
    [10] Deshmane, A., et al., Parallel MR imaging. Journal of Magnetic Resonance Imaging, 2012. 36(1): p. 55-72.
    [11] Blaimer, M., et al., SMASH, SENSE, PILS, GRAPPA: How to Choose the Optimal Method. Topics in Magnetic Resonance Imaging, 2004. 15(4): p. 223-236.
    [12] Cusack, R. and N. Papadakis, New Robust 3-D Phase Unwrapping Algorithms: Application to Magnetic Field Mapping and Undistorting Echoplanar Images. NeuroImage, 2002. 16(3, Part A): p. 754-764.
    [13] Gilbert, G., et al., Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging. Magnetic Resonance Imaging, 2012. 30(5): p. 722-730.
    [14] Liu, T., et al., Calculation of susceptibility through multiple orientation sampling (COSMOS): A method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magnetic Resonance in Medicine, 2009. 61(1): p. 196-204.
    [15] de Rochefort, L., et al., Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: Validation and application to brain imaging. Magnetic Resonance in Medicine, 2010. 63(1): p. 194-206.
    [16] Liu, T., et al., Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: Comparison with COSMOS in human brain imaging. Magnetic Resonance in Medicine, 2011. 66(3): p. 777-783.
    [17] Schweser, F., et al., Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism? NeuroImage, 2011. 54(4): p. 2789-2807.
    [18] Liu, T., et al., Accuracy of the Morphology Enabled Dipole Inversion (MEDI) Algorithm for Quantitative Susceptibility Mapping in MRI. IEEE transactions on medical imaging, 2012. 31(3): p. 816-824.
    [19] Bilgic, B., et al., Fast image reconstruction with L2-regularization. Journal of Magnetic Resonance Imaging, 2014. 40(1): p. 181-191.
    [20] Liu, T., et al., A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR in Biomedicine, 2011. 24(9): p. 1129-1136.
    [21] Griswold, M.A., et al., Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 2002. 47(6): p. 1202-1210.
    [22] Roemer, P.B., et al., The NMR phased array. Magnetic Resonance in Medicine, 1990. 16(2): p. 192-225.
    [23] M., H.R., et al., Direct parallel image reconstructions for spiral trajectories using GRAPPA. Magnetic Resonance in Medicine, 2006. 56(2): p. 317-326.
    [24] Jaeseok, P., et al., Artifact and noise suppression in GRAPPA imaging using improved k-space coil calibration and variable density sampling. Magnetic Resonance in Medicine, 2005. 53(1): p. 186-193.

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE