簡易檢索 / 詳目顯示

研究生: 萬政典
Wan, Cheng-Tien
論文名稱: 以有機金屬氣相沉積法成長含有應力補償結構之砷銻化鎵及砷化銦鎵長波長雷射及光檢測器之研究
Investigation of Strain-Compensated GaAsSb and InGaAs Long Wavelength Lasers and Photodetectors Grown by MOVPE
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 142
中文關鍵詞: 有機金屬氣相沉積法雷射光檢測器砷銻化鎵砷化銦鎵
外文關鍵詞: MOVPE, laser, photodetector, GaAsSb, InGaAs
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在於研究以金屬有機氣相沉積法成長砷化鎵系列之長波長雷射及光檢測器。在雷射元件部分,我們使用了GaAsSb/GaAs、InGaAs/GaAs量子井作為發光之主動層材料,並同時加入應力補償結構以改善因高壓縮應力造成磊晶品質劣化之現象。首先我們對GaAsSb材料作磊晶參數上之最佳化,發現使用TEGa,在低AsH3、低壓力成長下有利於Sb摻入,接著我們對成長溫度及流量作探討,發現成長溫度升高時,Sb之含量降低,此時再增加TEGa流量可使得Sb含量增加,而在溫度範圍約500~550oC,TEGa流量為125~200sccm時,可得到Sb含量大於0.35。接著我們成長GaAsSb/GaAs量子井雷射元件,當Sb含量由0.23增加至0.29時,發光波長可由1117nm增加至1174nm,然而銻含量再往上增加至0.31時,便無法得到雷射之特性,因此我們改變上層cladding之成長溫度由675oC降低至600oC,用以降低此高溫對於量子井之回火效應,便可得到雷射之特性;然而在GaAsSb/GaAs量子井中有較大之價電帶不連續,使得電洞分佈不均勻造成特性劣化,因此我們改用單量子井作為主動層,結果發現Jinf由818A/cm2降低至263A/cm2。接著我們將GaAsP加入主動層中形成GaAsSb/GaAsP量子井,發現此結構之發光波長有過短之問題,因此我們將GaAs插入此結構中形成GaAsSb/GaAs/GaAsP量子井,此結構擁有較低之電子侷限能階,當GaAs為4nm時,其發光波長可達1210nm,然而此雷射在高溫操作時有雙雷射波長放光之現象,在改用非對稱結構後,可消除此現象。另外,我們在成長量子井後先將溫度降低至350oC再升至高溫開始成長cladding層,結果發現在增加此一步驟後,可有效改善雷射之特性,其Jtr由51.4 A/cm2降低至35.1 A/cm2,放光波長由1227.6nm增加至1234.1nm。
    在1064nm波段之應用,我們利用In0.22Ga0.78As/GaAs量子井作為主動層,同時利用GaAs0.9P0.1/GaAs超晶格作為載子阻擋層,可使得雷射特性大幅提升,其中內部損耗僅有0.63cm-1,Jtr為39.1 A/cm2。接著我們利用In0.22Ga0.78As/GaAs三量子井作為吸光層並應用於光檢測器上,同時利用AlAs/GaAs布拉格反射鏡以增加光反射造成多次吸收的優點,在上/下層反射鏡對數為3/20對時,量子效率可達33.39%,吸收頻譜之半寬為16nm。
    本論文成功的利用了應力補償、成長中斷、結構設計來改善雷射特性,顯示砷化鎵系列之光電元件在經過適當設計之後,有極佳之潛力應用於長波長之光電元件應用上。

    The main purpose of the dissertation is to investigate the MOVPE growth of long wavelength lasers and photodetectors. In the laser devices, the GaAsSb/GaAs and InGaAs/GaAs QWs were used as the active medium. The strain-compensated structure was also used to improve the crystal quality. In the study of growing GaAsSb material, the TEGa for Ga source, low AsH3 flow and low reactor pressure are the key issues to increase the Sb incorporation. The Sb incorporation efficiency decreases with increasing temperature and decreasing TEGa flow. The window for high Sb incorporation (>0.35) is in the temperature range from 500 to 550oC with TEGa flow of 125-200sccm.
    After optimizing the growth condition, the GaAsSb/GaAs DQW lasers with various Sb compositions were fabricated. As the Sb composition increases from 0.23 to 0.29, the lasing wavelength increases from 1117 to 1174nm. However, there is no lasing characteristic observed in the lasers with Sb composition of 0.31. The growth temperature of p-cladding layer was reduced from 675 to 600oC to reduce the unintentional annealing effect, and the lasing characteristic can be observed. In the GaAsSb/GaAs QW structure, the valance band offset between GaAsSb and GaAs is large; hence results in holes distribution non-uniform. By using SQW structure instead of DQW structure, the Jinf was reduced from 818 to 263 A/cm2. Then, the GaAsP was used in the laser structure to form stran-compensated GaAsSb/GaAsP QW structure, but the lasing wavelengths were too short. By inserting GaAs between GaAsSb and GaAsP layers to form GaAsSb/GaAs/GaAsP SQW structure, the energy level of electron can be lowered; when the thickness of GaAs is 4nm, the lasing wavelength is 1210nm. Additionally, there were two lasing peaks under high temperature operation in GaAsSb/GaAs/GaAsP SQW lasers. By using asymmetric GaAsP/GaAsSb/GaAs/GaAsP SQW structure, the two lasing peaks were reduced to one. The post-cooling treatment is also applied on the laser devices, by decreasing the substrate temperature to 350oC after QW growth and before p-cladding growth, the laser performances were improved. The Jtr is reduced from 51.4 to 35.1 A/cm2, and the lasing wavelength is extended from 1227.6 to 1234.1nm.
    In the 1064nm application, the In0.22Ga0.78As/GaAs QW was used as the active medium. By using strain-compensated layer of GaAs0.9P0.1/GaAs SLs as barrier, the internal loss is only 0.63cm-1, and Jtr is 39.1 A/cm2. The photodectors were also fabricated by using In0.22Ga0.78As/GaAs TQW as absorption layer. In order to increases the quantum efficiency, the AlAs/GaAs DBR was used as the reflectors to provide more than one absorption path and increased the quantum efficiency. The maximum quantum efficiency of 33.39% with FWHM of 16nm can be obtained as the top/bottom DBR periods are 3/20.
    In this dissertation, the strained compensation, growth interruption and structural design were used to improve the laser performances. It shows that the GaAs-based devices are potentional optoelectronic devices for long wavelength application after properly designing.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgement V Contents VII Table Captions IX Figure Captions XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Organization of Dissertation 5 Chapter 2 Growth of GaAsSb QW 7 2.1 Introduction of MOVPE 7 2.2 Material and Device Measurement 11 Chapter 3 MOVPE growth of GaAsSb Alloys 18 3.1 Introduction 18 3.2 Experimental Details 21 3.3 Precursor Effect 21 3.4 Flow Rate of Group V 22 3.5 Reactor Pressure 23 3.6 Growth Temperature 23 3.7 Substrate Orientation Effect 26 3.8 Summary 29 Chapter 4 GaAsSb/GaAs QW Lasers 45 4.1 Experimental Details of GaAsSb/GaAs QW Lasers 45 4.2 GaAsSb/GaAs DQW Lasers with Various Sb Composition 46 4.3 Structural and Epitaxial Effects on GaAsSb/GaAs QW Lasers 47 4.3.1 Annealing Effect on GaAsSb/GaAs DQW Lasers 48 4.3.2 Comparison of DQW Laser with Various Well Thicknesses 48 4.3.3 Comparison of SQW and DQW Lasers 49 4.4 Summary 51 Chapter 5 Strain-Compensated GaAsSb/(GaAs)/GaAsP SQW Lasers 62 5.1 Introduction of Strained Compensation 62 5.2 Growth of GaAsP Material 62 5.3 Optical Properties of GaAsSb/GaAsP QWs 63 5.4 GaAsSb/GaAsP SQW Lasers 64 5.5 GaAsSb/GaAs/GaAsP SQW Lasers 65 5.5.1 Different GaAs Thickness Effect 65 5.5.2 Asymmetric GaAsP/(GaAs)/GaAsSb/(GaAs)/GaAsP SQW Lasers 68 5.6 Post Cooling Effect on GaAsSb/GaAsP and GaAsSb/GaAs/GaAsP SQW Lasers 70 5.6.1 Post Cooling Effect on GaAsSb/GaAsP SQW Lasers 70 5.6.2 Post Cooling Effect on GaAsSb/GaAs/GaAsP SQW Lasers 71 5.7 Summary 72 Chapter 6 InGaAs QW Laser and RCE-PD at 1064nm 96 6.1 Introduction of 1064nm Lasers 96 6.2 Growth of InGaAs/GaAs QW 98 6.3 Epitaxial Growth and Characterization of InGaAs SQW Lasers 100 6.4 InGaAs/GaAs TQW Photodetectors with and without Resonant-Cavity- Enhanced Structure 102 6.5 Summary 105 Chapter 7 Conclusions and Future Prospects 127 7.1 Conclusions 127 7.2 Future Prospects 130 References 131

    [1]Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol. 23, pp. 45-47, 1973.
    [2]G. Keiser, Optical Fiber Communications., New York: McGraw-Hill, 2000.
    [3]P. St. J. Russell, “Photonic crystal fibers,” Science, vol. 299, pp. 358-362, 2003.
    [4]S.-M. F. Nee, Optical and surface properties of oxyfluoride glass. pp. 122, 2000.
    [5]N. K. Dutta and R. J. Nelson, “Temperature dependence of threshold of InGaAsP/InP double-heterostructure lasers and Auger recombination,” Appl. Phys. Lett., vol. 38, pp. 407-409, 1981.
    [6]M. Yano, H. Imai and M. Takusagawa, “Analysis of threshold temperature characteristics for InGaAsP/InP double heterojunction lasers,” J. Appl. Phys., vol. 52, pp. 3172-3175, 1981.
    [7]A. Karim, P. Abraham, D. Lofgreen, Y.-J. Chiu, J. Piprek, and John Bowers, “Wafer bonded 1.55 μm vertical-cavity lasers with continuous-wave operation up to 105°C,” Appl. Phys. Lett., vol. 78, pp. 2632-2633, 2001.
    [8]R. Shau, M. Ortsiefer, J. Rosskopf, G. Böhm, F. Köhler and M.-C. Amann, “Vertical-cavity surface-emitting laser diodes at 1.55 μm with large output power and high operation temperature,” Electron. Lett., vol. 37, pp. 1295-1296, 2001.
    [9]S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88°C, continuouswave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 78, pp. 1337-1339, 2001.
    [10]V. Jayaraman, J. C. Geske, M. H. MacDougal, F. H. Peters, T. D. Lowes, and T. T. Char, “Uniform threshold current, continuous-wave, singlemode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett., vol. 34 , pp. 1405-1407, 1998.
    [11]D. A. Francis, D. B. Young, J. Walker, A. Verma, D. Gold and C. Decker, “Monolithic 1310nm buried heterostructure VCSEL usaing InGaAsP/InP DBR reflectors,” Proc. SPIE, vol. 6013, 60130A, 2005.
    [12]N. Tansu, J. Y. Yeh and L. J. Mawst, “Extremely Low threshold-current-density InGaAs quantum-well lasers with emission wavelength of 1215-1233nm,” Appl. Phys. Lett., vol. 82, pp. 4038-4040, 2003.
    [13]N. Tansu and L. J. Mawst, “Low-Threshold Strain-Compensated InGaAs(N) (λ=1.19-1.31μm) Quantum-Well Lasers,” IEEE Photon. Technol. Lett., vol. 14, pp. 444-446, 2002.
    [14]A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, D. A. Livshits, Y. M. Shernyakov, M. V. Maximov, N. A. Pihtin, I. S. Tarasov, V. M. Ustinov, Zh. I. Alferov, J. S. Wang, L. Wei, G. Lin, J. Y. Chi, N. N. Ledentsov and D. Bimberg, “High power lasers based on submonolayer InAs–GaAs quantum dots and InGaAs quantum wells,” Microelectronics Journal, vol. 34, pp. 491-493, 2003.
    [15]P. O. Leisher, A. J. Danner, J. J. Raftery and K. D. Choquette, “Proton implanted single mode holey vertical-vacity surface-emitting lasers,” Electron. Lett., vol. 41 , pp. 1010-1011, 2005.
    [16]S. J. Chang, H. C. Yu, Y. K. Su, I. L. Chen, T. D. Lee, C. M. Lu, C. H. Chiou, Z. H. Lee , H. P. Yang, C. P. Sung, “Highly strained InGaAs oxide confined VCSELs emitting in 1.25 μm,” Materials Sci. and Eng.: B, vol. 121 pp. 60–63, 2005.
    [17]W. C. Chen, Y. K. Su, R. W. Chuang, H. C. Yu, M. C. Tsai, K. Y. Cheng , J. B. Horng, C. Hu, and S. Tsau, “Highly strained 1.22 μm InGaAs lasers grown by MOVPE,” IEEE Photon. Technol. Lett., vol. 20, pp. 264-266, 2008.
    [18]L. W. Sung and H. H. Lin, “Highly strained 1.24-μm InGaAs/GaAs quantum-well lasers,” Appl. Phys. Lett., vol. 83, pp. 1107-1109, 2003.
    [19]S. R. Bank, H. B. Yuen, H. Bae, M. A. Wistey and J. S. Harris, “Overannealing effects in GaInNAs(Sb) alloys and their importance to laser applications,” Appl. Phys. Lett., vol. 88, 221115, 2006.
    [20]O. B. Shchekin and D. G. Deppe, “1.3μm InAs quantum dot laser with T0 = 161K from 0 to 80℃,” Appl. Phys. Lett., vol. 80, pp. 3277-3279, 2002.
    [21]S. Q. Yu, X. Jin, S. R. Johnson and Y. H. Zhang, “Gain saturation and carrier distribution effects in molecular beam epitaxy grown GaAsSb/GaAs quantum well lasers,” J. Vac. Sci. Technol. B, vol. 24, pp. 1617-1621, 2006.
    [22]P. W. Liu, G. H. Liao and H. H. Lin, “1.3μm GaAs/GaAsSb quantum well laser grown by solid source molecular beam epitaxy,” Electron. Lett., vol. 40, pp. 177-179, 2004.
    [23]S. R. Johnson, C. Z. Guo, S. Chaparro, Y. G. Sadofyev, J. Wang, Y. Cao, N. Samal, J. Xu, S. Q. Yu, D. Ding and Y. H. Zhang, “GaAsSb/GaAs band alignment evaluation for long-wave photonic applications,” J. Cryst. Growth, vol. 251, pp. 521-525, 2003.
    [24]D. C. Kilper, F. Quochi, J. E. Cunningham and M. Dinu, “High-Speed Dynamics of GaAsSb Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett., vol. 14, pp. 438-440, 2002.
    [25]P. W. Liu, M. H. Lee, H. H. Lin and J. R. Chen, “Low-threshold current GaAsSb/GaAs quantum well lasers grown by solid source molecular beam epitaxy,” Electron. Lett., vol. 38, pp. 1354-1355, 2002.
    [26]X. G. Sun, S. L. Wang, J. S. Hsu, R. Sidhu, X. G. G. Zheng, X. W. Li, J. C. Campbell and A. L. Holmes, “GaAsSb: A Novel Material for Near Infrared Photodetectors on GaAs Substrates,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 817-822, 2002.
    [27]T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei and S. Sugou, “Continuous-wave operation of 1.30μm GaAsSb/GaAs VCSELs,” Electron. Lett., vol. 37, pp. 566-567, 2001.
    [28]F. Quochi, D. C. Kilper, J. E. Cunningham, M. Dinu and J. Shah, “Continuous-Wave operation of a 1.3-μm GaAsSb-GaAs Quantum-Well Vertical-Cavity Surface-Emitting Laser at Room Temperature,” IEEE Photon. Technol. Lett., vol. 13, pp. 921-923, 2001.
    [29]O. Blum and J. F. Klem, “Characteristics of GaAsSb Single-Quantum-Well-Lasers Emitting Near 1.3μm,” IEEE Photon. Technol. Lett., vol. 12, pp. 771-773, 2000.
    [30]F. Quochi, J. E. Cunningham, M. Dinu and J. Shah, “Room temperature operation of GaAsSb/GaAs quantum well VCSELs at 1.29μm,” Electron. Lett., vol. 36, pp. 2075-2076, 2000.
    [31]S. W. Ryu and P. D. Dapkus, “Low threshold current density GaAsSb quantum well (QW) lasers grown by metal organic chemical vapour deposition on GaAs substrates,” Electron. Lett., vol. 36, pp. 1387-1388, 2000.
    [32]M. Yamada, T. Anan, K. Tokutome, A. Kamei, K. Nishi and S. Sugou, “Low-Threshold Operation of 1.3-μm GaAsSb Quantum-Well Lasers Directly Grown on GaAs Substrates,” IEEE Photon. Technol. Lett., vol. 12, pp. 774-776, 2000.
    [33]T. Anan, K. Nishi, S. Sugou, M. Yamada, K. Tokutome, A. Gomyo, “GaAsSb: A novel material for 1.3μm VCSELs,” Electron. Lett., vol. 34, pp. 2127-2129, 1998.
    [34]H. C. Kuo, Y. H. Chang, H. H. Yao, Y. A. Chang, F.-I. Lai, M. Y. Tsai, and S. C. Wang, “High-Speed Modulation of InGaAs:Sb-GaAs-GaAsP Quantum-Well Vertical-Cavity Surface-Emitting Lasers With 1.27-μm Emission Wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 528-530, 2005.
    [35]J. S. Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges,” Semicond. Sci. Technol., vol. 17, pp. 880-891, 2002.
    [36]M. R. Gokhale, P. V. Studenkov, J. Wei and S. R. Forrest, “Low-threshold current, high-efficiency 1.3-μm wavelength aluminum-free InGaAsN-based quantum-well lasers,”IEEE Photon. Technol. Lett., vol. 12, pp.131-133, 2000.
    [37]M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance,” Jpn. J. Appl. Phys. 1, vol. 35, pp. 1273-1275, 1996.
    [38]A. Ramakrishnan, G. Steinle, D. Supper, C. Degen, G. Ebbinghaus, “Electrically pumped 10 Gbit/s MOVPE-grown monolithic 1.3 µm VCSEL with GaInNAs active region,” Electron Lett., vol. 38, pp. 322-324, 2002.
    [39]B. Borchert, A.Y. Egorov, S. Illek, M. Komainda, H. Riechert, “1.29 µm GaInNAs multiple quantum-well ridge waveguide laser diodes with improved performance,” Electron. Lett., vol. 35, pp. 2204-2206, 1999.
    [40]W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. olson, S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Phys. Rev. Lett., vol. 82, pp.1221-1224, 1999.
    [41]J. Wu, W. Shan, and W. Walukiewicz, “Band anticrossing in highly mismatched III-V semiconductor alloys,” Semicond. Sci. Technol., vol. 17, pp.860-869, 2002.
    [42]S. D. Wu, M. Kato, M. Uchiyama, K. Higashi, F. Ishikawa and M. Kondow, “Nitrogen Gas Flow Driven Unintentional Incorporation of Al during Growth of Dilute Nitride Semiconductor by Plasma-Assisted Molecular Beam Epitaxy,” Appl. Phys. Express, vol. 1, 035004, 2008.
    [43]P. Sundgren, C. Asplund, K. Baskar and M. Hammar, “Morphological instability of GaInNAs quantum wells on Al-containing layers grown by metalorganic vapor-phase epitaxy,” Appl. Phys. Lett., vol. 82, pp. 2431-2433, 2003.
    [44]P. C. Chiu, N. T. Yeh, C. C. Hong, T. P. Hsieh, Y. T. Tsai, W. J. Ho and J. I. Chyi, “InGaAsN/GaAs quantum-well lasers using two-step and nitride passivation growth,” Appl. Phys. Lett., vol. 87, 091115, 2005.
    [45]T. Nishida, M. Takaya, S. Kakinuma and T. Kaneko, “4.2-mW GaInNAs Long-Wavelength VCSEL Grown by Metalorganic Chemical Vapor Deposition,” IEEE J. Sel. Top. Quantum Electron., vol. 11, pp. 958-961, 2005.
    [46]T. Takeuchi, Y. L. Chang, M. Leary, D. Mars, Y. K. Song, S. D. Roh, H. C. Luan, L. M. Mantese, A. Tandon, R. Twist, S. Belov, D. Bour, and M. Tan,, “Al Contamination in InGaAsN Quantum Wells Grown by Metalorganic Chemical Vapor Deposition and 1.3μm InGaAsN Vertical Cavity Surface Emitting Lasers,” Jpn. J. Appl. Phys., vol. 43, pp. 1260-1263, 2004.
    [47]T. Takeuchi, Y. L. Chang, M. Leary, D. Mars, H. C. Luan, S. D. Roh, L. M. Mantese, Y. K. Song, A. Tandon, R. Twist, S. Belov, D. Bour and M. Tan, “Al Gettering for InGaAsN in Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 43, pp. L1085-L1087, 2004.
    [48]S. D. Wu, M. Kato, M. Uchiyama, K. Higashi, F. Ishikawa and M. Kondow, “Effect of the unintentional incorporation of Al during the molecular beam epitaxial growth of GaInNAs quantum well,” Phys. Stat. Sol. (c), vol. 5, pp.2736-2739, 2008.
    [49]R. Teissier, D. Sicault, J. C. Harmand, G. Ungaro, G. Le Roux and L. Largeau, “Temperature-dependent valence band offset and band-gap energies of pseudomorphic GaAsSb on GaAs,” J. Appl. Phys., vol. 89, pp. 5473-5477, 2001.
    [50]K. Ikossianastasiou, “GaAsSb for Heterojunction Bipolar-Transistors,” IEEE Trans. Electron. Devices, vol. 40, pp. 878-884, 1993.
    [51]Y. Oda, N. Watanabe, M. Uchida, K. Kurishima and T. Kobayashi, “C-doped GaAsSb base HBT without hydrogen passivation grown by MOVPE,” J. Cryst. Growth, vol. 272, pp. 700-705, 2004.
    [52]G. J. Sullivan, C. W. Farley, W. J. Ho, R. L. Pierson, M. K. Szwed, M. D. Lind and R. L. Bernescut, “High-Gain Alinas/Gaassb/Alinas Npn Hbts on Inp,” J. Electron. Mater., vol. 21, pp. 1123-1125, 1992.
    [53]B. P. Yan, C. C. Hsu, X. Q. Wang and E. S. Yang, “Low turn-on voltage InGaP/GaAsSb/GaAs double HBTs grown by MOCVD,” IEEE Electron Device Lett., vol. 23, pp. 170-172, 2002.
    [54]B. P. Yan, C. C. Hsu, X. Q. Wang and E. S. Yang, "Current transport mechanism in InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors," Appl. Phys. Lett., vol. 85, pp. 3884-3886, 2004.
    [55]B. P. Yan, C. C. Hsu, X. Q. Wang and E. S. Yang, "Thermal stability of current gain in InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors," Appl. Phys. Lett., vol. 85, pp. 4505-4507, 2004.
    [56]A. Y. Cho, H. C. Casey and P. W. Foy, “Back‐surface emitting GaAsxSb1−x LED’s (λ=1.0 μm) prepared by molecular‐beam epitaxy,” Appl. Phys. Lett., vol. 30, pp. 397-399, 1977.
    [57]R. Sidhu, H. Chen, N. Duan, G. V. Karve, J. C. Campbell and A. L. Holmes, “GaAsSb resonant-cavity enhanced avalanche photodiode operating at 1.06 μm,” Electron. Lett., vol. 40, pp. 1296-1297, 2004.
    [58]X. Sun, J. Hsu, X. G. Zheng, J. C. Campbell and A. L. Holmes, “GaAsSb Resonant-Cavity-Enhanced Photodetector Operating at 1.3 μm,” IEEE Photon. Technol. Lett., vol. 14, pp. 681-683, 2002.
    [59]G. B. Liu, S. L. Chuang and S. H. Park, “Optical gain of strained GaAsSb/GaAs quantum-well lasers: A self-consistent approach,” J. Appl. Phys., vol. 88, pp. 5554-5561, 2000.
    [60]J. D. Thomson, P. M. Smowton, P. Blood and J. F. Klem, “Optical gain and spontaneous emission in GaAsSb-InGaAs type-II "W" laser structures,” IEEE J. Quantum Electron., vol. 43, pp. 607-613, 2007.
    [61]S. W. Ryu and P. D. Dapkus, “Optical characterization and determination of conduction band offset of type-II GaAsSb/InGaAs QW,” Semicond. Sci. Technol., vol. 19, pp. 1369-1372, 2004.
    [62]R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz and J. C. Harmand, “Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb-GaInAs/GaAs bilayer quantum wells,” Appl. Phys. Lett., vol. 84, pp. 3453-3455, 2004.
    [63]C. Schlichenmaier, S. W. Koch and W. W. Chow, “Linewidth enhancement factor in 1.3μm GaAsSb type-II quantum-well lasers,” Appl. Phys. Lett., vol. 81, pp. 2944-2946, 2002.
    [64]M. Kudo, K. Ouchi, J. Kasai and T. Mishima, “Low-lattice-strain long-wavelength GaAsSb/GaInAs type-II quantum wells grown on GaAs substrates,” Jpn. J. Appl. Phys. 2, vol. 41, pp. L1040-L1042, 2002.
    [65]S. W. Ryu and P. D. Dapkus, “Room temperature operation of type-II GaAsSb/InGaAs quantum well laser on GaAs substrates,” Electron. Lett., vol. 38, pp. 564-565, 2002.
    [66]W. W. Chow and H. C. Schneider, “Charge-separation effects in 1.3μm GaAsSb type-II quantum-well laser gain,” Appl. Phys. Lett., vol. 78, pp. 4100-4102, 2001.
    [67]J. F. Klem, O. Blum, S. R. Kurtz, J. Fritz and K. D. Choquette, “GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates,” J. Vac. Sci. Technol. B, vol. 18, pp. 1605-1608, 2000.
    [68]L. J. Mawst, J. Y. T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech and N. Tansu, “MOCVD-Growth Dilute Nitride Type II Quantum Wells,” IEEE J. Sel. Top. Quantum Electron., vol. 14, pp. 979-991, 2008.
    [69]J. Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer and N. Tansu, “Long wavelength emission of InGaAsN/GaAsSb type II "W" quantum wells,” Appl. Phys. Lett., vol. 88, 051115, 2006.
    [70]J. Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer and N. Tansu, “Characteristics of InGaAsN-GaAsSb type-II "W" quantum wells,” J. Cryst. Growth, vol. 287, pp. 615-619, 2006.
    [71]A. A. Khandekar, B. E. Hawkins, T. F. Kuech, J. Y. Yeh, L. J. Mawst, J. R. Meyer, I. Vurgaftman and N. Tansu, “Characteristics of GaAsN/GaAsSb type-II quantum wells grown by metalorganic vapor phase epitaxy on GaAs substrates,” J. Appl. Phys., vol. 98, 123525-1, 2005.
    [72]N. Tansu and L. J. Mawst, “Design analysis of 1550-nm GaAsSb-(In)GaAsN type-II quantum-well laser active regions,” IEEE J. Quantum Electron., vol. 39, pp. 1205-1210, 2003.
    [73]H. M. Manasevit and W. I. Simpson, “The Use of Metal-Organics in the Preparation of Semiconductor Materials,” J. Electrochem. Soc., vol. 116, pp. 1725-1732, 1969.
    [74]G. B. Stringfellow, “Epitaxy,” Rep. Prog. Phys., vol. 45, pp. 469-525, 1982.
    [75]G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory and Practice,” Academic Press, Inc., 1989.
    [76]W. L. Bragg, “The Diffraction of Short Electromagnetic Waves by a Crystal,” Proceedings of the Cambridge Philosophical Society, vol. 17, pp. 43-57, 1913.
    [77]H. P. Myers, “Introductory Solid State Physics,” Taylor & Francis, 2002.
    [78]G. P. Agrawal and N. K. Dutta, “Semiconductor lasers,” 2nd edn, Van Norstrand Reinhold, New York, 1993.
    [79]M. J. Cherng, G. B. Stringfellow and R. M. Cohen, “Organometallic vapor phase epitaxial growth of GaAs0.5Sb0.5,” Appl. Phys. Lett., vol. 44, pp. 677-679, 1984.
    [80]G. B. Stringfellow and M. J. Cherng, “OMVPE growth of GaAs1-xSbx: solid composition,” J. Cryst. Growth, vol. 64, pp. 413-425, 1983.
    [81]G. B. Stringfellow, “A critical appraisal of growth mechanisms in MOVPE,” J. Cryst. Growth, vol. 68, pp. 111-122, 1984.
    [82]J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth, vol. 27, pp. 118-125, 1974.
    [83]B. E. Hawkins, A. A. Khandekar, J. Y. Yeh, L. J. Mawst and T. F. Kuech, “Effects of Gas switching sequences on GaAs/GaAs1−ySby superlattices,” J. Cryst. Growth, vol. 272, pp. 686-693, 2004.
    [84]M. Pristovsek, M. Zorn, U. Zeimer and M. Weyers, “Growth of strained GaAsSb layers on GaAs (0 0 1) by MOVPE,” J. Cryst. Growth, vol. 274, pp. 347-353, 2005.
    [85]R. Kaspi, “Compositional abruptness at the InAs-on-GaSb interface: optimizing growth by using the Sb desorption signature,” J. Cryst. Growth, vol. 201-202, pp. 864-867, 1999.
    [86]R. Kaspi and K. R. Evans, “Sb-surface segregation and the control of compositional abruptness at the GaAsSb/GaAs interface,” J. Cryst. Growth, vol. 175-176, pp. 838-843, 1997.
    [87]M. Yano, H. Yokose, Y. Iwai and M. Inoue, “Surface reaction of III–V compound semiconductors irradiated by As and Sb molecular beams,” J. Cryst. Growth, vol. 111, pp. 609-613, 1991.
    [88]Y. K. Su, W. C. Chen, C. T. Wan, H. C. Yu, R. W. Chuang, M. C. Tsai, K. Y. Cheng, C. Hu and Seth Tsau, “Optimization of the highly strained InGaAs/GaAs quantum well lasers grown by MOVPE,” J. Cryst. Growth, vol. 310, pp. 3615-3620, 2008.
    [89]G. B. Stringfellow, “Miscibility gaps and spinodal decomposition in III/V quaternary alloys of the type AxByC1-x-yD,” J. Appl. Phys., vol. 54, pp.404-409, 1983.
    [90]K. Onabe, “Unstable Region in Quaternary In1-xGaxAs1-ySby Calculated Using Strictly Regular Solution Approximation,” Jpn. J. Appl. Phys., vol. 21, pp.964-964, 1982.
    [91]Y. K. Su, C. T. Wan, R. W. Chuang, C. Y. Huang, W. C. Chen, Y. S. Wang, and H. C. Yu, “Temperature effect on the growth of strained GaAs1-ySby/GaAs (y>0.4) quantum wells by MOVPE,” J. Cryst. Growth, vol. 310, pp. 4850-4853, 2008.
    [92]C. A. Chang, R. Ludeke, L. L. Chang and L. Esaki, “Molecular‐beam epitaxy (MBE) of In1−xGaxAs and GaSb1−yAsy,” Appl. Phys. Lett., vol. 31, pp. 759-761, 1977.
    [93]D. J. Bottomley, “Melting Induced by Epitaxial Stress,” Jpn. J. Appl. Phys., vol. 37, pp. 2652-2655, 1998.
    [94]C. B. Cooper, M. J. Ludowise, V. Aebi and R. L. Moon, “The organometallic VPE growth of GaAs1-ySby using trimethylantimony and Ga1-xInxAs using trimethylarsenic,” J. Electon. Mater., vol. 9, pp.299-309, 1980.
    [95]S. M. Beidair, M. L. Timmons, P. K. Chiang, L. Simpson and J. R. Hauser, “Growth of GaAs(1-x)Sbx by organometallic vapor phase epitaxy,” J. Electron. Mater., vol. 12, pp. 959-972, 1983.
    [96]C. Amano, A. Rudra, P. Grunberg, J. F. Carlin and M. Ilegems, “Growth temperature dependence of the interfacet migration in chemical beam epitaxy of InP on non-planar substrates,” J. Cryst. Growth, vol. 164, pp. 321-326, 1996.
    [97]L. C. Chou, Y. R. Lin, C. T. Wan and H. H. Lin, “[111]B-oriented GaAsSb grown by gas source molecular beam epitaxy,” Microelectron. J., vol. 37, pp. 1511-1514, 2006.
    [98]J. R. Dong, S. J. Chua, Y. J. Wang and H. R. Yuan, “Substrate orientation dependence of In composition of AlGaInP epilayers grown by MOCVD,” J. Cryst. Growth, vol. 269, pp. 408-412, 2004.
    [99]C. T. Wan, Y. K. Su, R. W. Chuang, C. Y. Huang, Y. S. Wang, W. C. Chen, and H. C. Yu, “Improving photoluminescence of highly strained 1.32μm GaAsSb/GaAs multiple quantum wells grown on misorientation substrate,” J. Cryst. Growth, vol. 310, pp. 4854-4857, 2008.
    [100]C. T. Wan, Y. K. Su, R. W. Chuang, H. C. Yu, C. Y. Huang, W. C. Chen, W. H. Lin and M. Pilkuhn, “High-Temperature Stability of Lasing Wavelength in GaAsSb/GaAs DQW Lasers,” IEEE Electron Device Lett., vol. 30, pp. 1155-1157, 2009.
    [101]T. K. Sharma, M. Zorn, F. Bugge, R. Hülsewede, G. Erbert and M. Weyers, “High-power highly strained InGaAs quantum-well lasers operating at 1.2 μm,” IEEE Photon. Technol. Lett., vol 14, pp. 887-889, 2002.
    [102]M. S. Noh, J. H. Ryou, R. D. Dupuis, Y. L. Chang and R. H. Weissman, “Band lineup of pseudomorphic GaAs1−xSbx quantum-well structures with GaAs, GaAsP, and InGaP barriers grown by metal organic chemical vapor deposition,” J. Appl. Phys., vol. 100, 093703, 2006.
    [103]D. S. Jiang, L. F. Bian, X. G. Liang, K. Chang, B. Q. Sun, S. Johnson and Y. H. Zhang, “Structural and optical properties of GaAsSb/GaAs heterostructure quantum wells,” J. Cryst. Growth, vol. 268, pp. 336-341, 2004.
    [104]X. H. Zheng, D. S. Jiang, S. Johnson and Y. H. Zhang, “Structural and optical properties of strain-compensated GaAsSb/GaAs quantum wells with high Sb composition,” Appl. Phys. Lett., vol. 83, pp. 4149-4151, 2003.
    [105]M. S. Noh, R. D. Dupuis, D. P. Bour, G. Walter and N. Holonyak, “Long-wavelength strain-compensated GaAsSb quantum-well heterostructures laser grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 83, pp. 2530-2532, 2003.
    [106]P. Dowd, S. R. Johnson, S. A. Feld, M. Adamcyk, S. A. Chaparro, J. Joseph, K. Hilgers, M. P. Horning, K. Shiralagi and Y. H. Zhang, “Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communications applications,” Electron. Lett., vol. 39, pp. 987-988, 2003.
    [107]M. Ruiz, H. Odriozola, C. H. Kwok, N. Michel, M. Calligaro, M. Lecomte, O. Parillaud, M. Krakowski, J. M. G. Tijero, I. Esquivias, R. V. Penty, and I. H. White, “High-brightness tapered lasers with an Al-free active region at 1060 nm,” Proc. of SPIE, vol. 7230, 72301D-1, 2009.
    [108]F. Bugge, A. Knauer, U. Zeimer, J. Sebastian, V. B. Smirnitski, A. Klehr, G. Erbert, and M. Weyers, “MOVPE growth of tunable DBR laser diode emitting at 1060 nm,” J. Crystal Growth, vol. 195, pp.676-680, 1998.
    [109]H. Odriozola, J. M. G. Tijero, I. Esquivias1, L. Borruel, A. Martín-Mínguez, N. Michel, M. Calligaro, M. Lecomte, O. Parillaud, and M. Krakowski, “Design of 1060 nm Tapered Lasers with Separate Contacts,” NUSOD '08. International Conference on Numerical Simulation of Optoelectronic Devices, pp. 67-68, 2008.
    [110]S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Z. I. Alferov, “Ultralow Internal Optical Loss in Separate-Confinement Quantum-Well Laser Heterostructures,” Semiconductors, vol. 38, pp. 1430-1439, 2004.
    [111]N. Michel, H. Odriozola, C. H. Kwok, M. Ruiz, M. Calligaro, M. Lecomte, O. Parillaud, M. Krakowski, M. Xia, R. V. Penty, I.H. White, J.M.G. Tijero and I. Esquivias, “High modulation efficiency and high power 1060 nm tapered lasers with separate contacts,” Electron. Lett., vol. 45, pp.103-104, 2009
    [112]H. Asano, M. Wada, T. Fukunaga, and T. Hayakawa, “Temperature-insensitive operation of real index guided 1.06 μm InGaAs/GaAsP strain-compensated single-quantum-well laser diodes,” Appl. Phys. Lett., vol. 74, pp. 3090-3092, 1999.
    [113]M. Yuda, T. Sasaki, J. Temmyo, M. Sugo, and C. Amano, “High-Power Highly Reliable 1.02-1.06-μm InGaAs Strained-Quantum-Well Laser Diodes,” IEEE J. Quantum Electron., vol. 39, pp. 1515-1520, 2003.
    [114]M. H. Hu, H. K. Nguyen, K. Song, Y. Li, N. J. Visovsky, X. Liu, N. Nishiyama, S. Coleman, L. C. Hughes, Jr., J. Gollier, W. Miller, R. Bhat, and C.-E. Zah, “High-Power High-Modulation-Speed 1060-nm DBR Lasers for Green-Light Emission,” IEEE Photon. Technol. Lett., vol. 18, pp. 616-618, 2006.
    [115]C. T. Wan, Y. K. Su, H. C. Yu, C. Y. Huang, W. H. Lin, W. C. Chen, H. C. Tseng, J. B. Horng, C. Hu, and Seth Tsau, “Low transparency current density and low internal loss of 1060nm InGaAs laser with GaAsP/GaAs superlattices as strain-compensated layer,” IEEE Photon. Technol. Lett., vol. 21, pp. 1474-1476, 2009.
    [116]M. R. Brown, R. J. Cobley, K. S. Teng, P. Rees, S. P. Wilks, A. Sobiesierski, P. M. Smowton and P. Blood, “Modeling multiple quantum barrier effects and reduced electron leakage in red-emitting laser diodes,” J. Appl. Phys., vol. 100, 084509, 2006.
    [117]M. C. Wu and P. H. Lei, “Growth and characterization of compressive-strain GaInAsP/InP multiple-quantum-well laser diodes with the tensile-strain GaInP quantum barrier,” J. Vac. Sci. Technol. B, vol. 22, pp. 961-965, 2004.
    [118]Q. Han, X. H. Yang, Z. C. Niu, H. Q. Ni, Y. Q. Xu, S. Y. Zhang, Y. Du, L. H. Peng, H. Zhao, C. Z. Tong, R. H. Wu and Q. M. Wang, “1.55 μm GaInNAs resonant-cavity-enhanced photodetector grown on GaAs,” Appl. Phys. Lett., vol. 87, 111105, 2005.
    [119]X. Sun, S. Wang, X. G. Zheng, X. Li, J. C. Campbell and A. L. Holmes, Jr., “1.31 μm GaAsSb resonant-cavity-enhanced separate absorption, charge and multiplication avalanche photodiodes with low noise,” J. Appl. Phys., vol. 93, pp. 774-777, 2003.
    [120]G. S. Kinsey, D. W. Gotthold, A. L. Holmes, Jr. and J. C. Campbell, “GaNAs resonant-cavity avalanche photodiode operating at 1.064 μm,” Appl. Phys. Lett., vol. 77, pp. 1543-1545, 2002.
    [121]J. B. Héroux, X. Yang and W. I. Wang, “GaInNAs resonant-cavity-enhanced photodetector operating at 1.3 μm,” Appl. Phys. Lett., vol. 75, pp. 2716-2718, 1999.
    [122]J. A. Jervase and Y. Zebda, “Characteristic Analysis of Resonant-Cavity-Enhanced (RCE) Photodetectors,” IEEE J. Quantum Electron., vol. 34, pp. 1129-1134, 1998.
    [123]K. Lai and C. Campbell, “Design of a Tunable GaAs/AlGaAs Multiple-Quantum-Well Resonant-Cavity Photodetector,” IEEE J. Quantum Electron., vol. 30, pp. 108-114, 1994.
    [124]Z. M. Li, D. Landheer, M. Veilleux, D. R. Conn, R. Surridge, J. M. Xu and R. I. McDonald, “Analysis of a Resonant-Cavity Enhanced GaAs/AlGaAs MSM Photodetector,” IEEE Photon. Technol. Lett., vol. 4, pp. 473-476, 1992.
    [125]N, Wiedmann, J. Schmitz, K. Boucke, N. Herres, J. Wagner, M. Mikulla, R. Poprawe and G. Weimann, “Band-edge aligned quaternary carrier barriers in InGaAs-AlGaAs high-power diode lasers for improved high-temperature operation,” IEEE J. Quantum Electron., vol. 38, pp. 67-72, 2002.

    下載圖示 校內:2013-07-23公開
    校外:2013-07-23公開
    QR CODE