簡易檢索 / 詳目顯示

研究生: 崔道成
Tsuei, Dao-Cheng
論文名稱: 3kW短弧氙燈電源系統之研製
Design and Implementation of 3 kW Short-Arc Xenon Lamp Power Supply System
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 63
中文關鍵詞: 短弧氙燈錯相式功率因數修正器全橋串聯諧振轉換器
外文關鍵詞: short-arc xenon lamps, interleaved boost converter, full-bridge series resonant converter
相關次數: 點閱:124下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中研製一兩級式短弧氙燈電源系統,系統前級為錯相式升壓型功率因數修正電路,用以提高系統之功率因數並降低輸入電流諧波失真;後級採用全橋隔離式諧振轉換器及返馳式轉換器,用以提供短弧氙燈一點燈高壓及穩態直流電流。本論文首先簡介短弧氙燈之特性,並討論功率因數修正電路與全橋諧振轉換電路之動作原理,接著分析短弧氙燈高壓啟動電路。最後,實作一輸入電壓220 vac ~ 264 vac、輸出電壓30 VDC之3 kW短弧氙燈電源以測試與驗證理論之正確性。實驗結果顯示,功率因數轉換器之滿載效率達95.8 %以上,且功率因數可達0.96以上,全橋諧振轉換器效率最高為93%,整體系統效率可達到85%以上。

    A two-stage short-arc xenon lamps power system is designed and implemented in this thesis. The front stage of this system is an interleaved boost power factor corrector, which is used to improve power factor and reduce input current harmonic distortion. An isolated full-bridge resonant converter and a flyback converter are adopted in the rear stage, which can provide a starting voltage and a stable DC current to the short-arc xenon lamps. The characteristics of short-arc xenon lamp are introduced first. Then, the operational principles of the power factor corrector and full-bridge resonant converter are discussed in detail. The high voltage starting method of short-arc xenon lamp is also be discussed and analyzed. Finally, a short-arc xenon lamps power system with rated power of 3 kW and output voltage of 30 VDC is implemented and tested at input voltage 220 vac ~ 264 vac to validate its feasibility. According to the experimental result, the maximum conversion efficiency of the power factor correction at full load is over 95.8% and the power factor is over 0.96. The maximum conversion efficiency of full-bridge resonant converter is 93%, and the system efficiency is more than 85%

    目錄 第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文大綱 2 第二章 功率因數修正器與全橋諧振轉換器原理與簡介 4 2.1 太陽能檢測系統簡介 4 2.2 功率因數與主動式控制法介紹 6 2.3 錯相式升壓型電路動作原理分析 11 2.4 全橋諧振轉換器介紹與動作原理分析 20 第三章 短弧氙燈啟動與穩態控制方式 34 3.1 短弧氙燈點燈要件分析 34 3.2 短弧氙燈之啟動電壓控制考量 36 第四章 系統研製與討論 40 4.1 系統規格與重要參數設計 40 4.1.1 錯相式升壓型功率因數修正器參數設計 41 4.1.2 全橋諧振轉換器參數設計 42 4.2 實驗結果與討論 44 4.2.1 主動式功因修正電路實驗結果 45 4.2.2 全橋諧振轉換器電路實驗結果 49 4.2.3 驅動電源系統與短弧氙燈整合測試 54 第五章 結論與未來展望 59 5.1 結論 59 5.2 未來展望 60

    [1]T. J. Liang and M. H. Chen, “Two-stage high-power-factor electronic ballast for metal-halide lamps,” IEEE Trans. on Power Electronics, vol. 24, No.12, pp.787-795, December. 2009.
    [2]OSRAM, “Theater lamps”.
    [3]OSRAM, “Xenon short arc lamps photo optics”
    [4]P. W. Lee, Y. S. Lee, D. K. Cheng, and X. C. Liu, “Steady-state analysis of an interleaved boost converter with coupled inductor,” IEEE Trans. on Industrial Electronics, vol. 47, No.4, pp.787-795, August. 2000.
    [5]F. Yang, X. Ruan, Y. Yang, and Z. Ye, “Interleaved critical current mode boost PFC converter with coupled inductor,” IEEE Trans. on Power Electronics, vol. 26, No.9, pp.2404-2413, Sep. 2011.
    [6]Y. L. Chen, H. J. Chen, Y. M. Chen, and K. H. Liu, “A stepping on-time adjustment method for interleaved multichannel PFC converters,” IEEE Trans. on Power Electronics, vol. 30, No.3, pp.1170-1176, March. 2015.
    [7]Z. Zhang, C. Xu, and Y. F. Liu, “A digital adaptive discontinuous current source driver for high-frequency interleaved boost PFC converters,” IEEE Trans. on Power Electronics, vol. 29, No.3, pp.1298-1310, March. 2014.
    [8]Y. S. Roh, Y. J. Moon, J. Park, and C. Yoo, “A two-phase interleaved power factor correction boost converter with a variation-tolerant phase shifting technique,” IEEE Trans. on Power Electronics, vol. 29, No.2, pp.1032-1040, Feb. 2014.
    [9]H. Choi and L. Balogh, “A cross-coupled master-slave interleaving method for boundary conduction mode (BCM) PFC Converters, ” IEEE Trans. on Power Electronics, vol. 27, No.10, pp.4202-4211, Oct. 2012.
    [10]B. Su, J. Zhang, and Z. Lu, “Totem-pole boost bridgeless PFC rectifier with simple zero-current detection and full-range ZVS operating at the boundary of DCM/CCM, ” IEEE Trans. on Power Electronics, vol. 26, No. 2, pp.427-435, Feb. 2011. 
    [11]F. Musavi, W. Eberle, and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. on Power Electronics, vol. 47, No. 4, pp.1833-1843, July. 2011.
    [12]H. J. Kim, G. S. Seo, B. H. Cho, and H. Choi, “A simple average current control with on-time double for multiphase CCM PFC converter,” IEEE Trans. on Power Electronics, vol. 30, No. 3, pp.1683-1693, March. 2015.
    [13]A. K. S. Bhat, “Analysis optimization and design of a series-parallel resonant converter,” in Proc. IEEE APEC, pp. 155-164, 1990.
    [14]K. H. Liu and F. C. Lee., “Zero-voltage switching technique in DC-DC converters,” IEEE Trans. on Industrial Electronics, vol. 5, no. 3, pp. 293-304 1986.
    [15]R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Trans. on Power Electronics, vol. 13, no. 2, pp. 174-182, 1988.
    [16]R. Oruganti and T. C. How, “Resonant-tank control of parallel resonant converter,” IEEE Trans. on Power Electronics, vol. 8, no. 2, pp. 127-134, 1993.
    [17]R. Liu and C. Q. Lee, “Analysis and design of LLC-type series resonant converter,” Electronics Letters, vol. 24, no. 24, pp. 1517-1519, 1988.
    [18]J. F. Lazar and R. Martinelli “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE APEC, vol. 2, pp. 728-735, 2001.
    [19]B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC-DC conversion,” in Proc. IEEE APEC, vol. 2, pp. 1108-1112, 2002.
    [20]B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. Wyk, “Optimal design methodology for LLC resonant converter,” in Proc. IEEE APEC, 2006, pp. 533–538.
    [21]R. Liu and C. Q. Lee, “Analysis and design of LLC-type series resonant converter,” Electronics Letters, vol. 24, no. 24, pp. 1517-1519, 1988.
    [22]J. F. Lazar and R. Martinelli “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE APEC, vol. 2, pp. 728-735, 2001.
    [23]O. P. Mandhana and R. G. Hoft, “Steady state frequency domain analysis of parallel-series resonant converter,” in Proc. IEEE APEC, pp. 229-236, 1992.
    [24]H. Matsumori, T. Kosaka, K. Sekido, K. Kim, T. Egawa, and N. Matsui, “Isolated DC-DC converter utilizing GaN power device for automotive application,” in Proc. IEEE APEC, pp. 1704-1709, 2019.
    [25]R. Chen and S. Y. Yu, “A high-efficiency high-power-density 1MHz LLC converter with GaN devices and integrated transformer,” in Proc. IEEE APEC, pp. 791-796, 2018.
    [26]A. Amirahmadi, M. Domb, and E. Persson, “High power density high efficiency wide input voltage range LLC resonant converter utilizing E-mode GaN switches,” in Proc. IEEE APEC, pp. 350-354, 2017.
    [27]Y. K. Lo and J. Y. Lin, “Active-clamping ZVS flyback converter employing two transformers,” IEEE Trans. on Power Electron., vol. 22, no. 6, pp. 2416-2423, Nov. 2007.
    [28]H. Wu, L. Chen, and Y. Xing, “Secondary-side phase-shift-controlled dual-transformer-based asymmetrical dual-bridge converter with wide voltage gain,” IEEE Trans. on Power Electron., vol. 30, no. 10, pp. 5381-5392, Oct. 2015.
    [29]M. Narimani and G. Moschopoulos, “A new single-phase single-stage three-level power-factor-correction AC–DC converter with phase-shift modulation,” IEEE Trans. on Ind. Electron., vol. 60, no. 9, pp. 3731-3735, Jun. 2012.
    [30]Texas Instruments, “Interleaving continuous conduction mode PFC controller (UCC28070),”Data Sheet, 2008.

    無法下載圖示 校內:2025-02-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE