研究生: |
崔道成 Tsuei, Dao-Cheng |
---|---|
論文名稱: |
3kW短弧氙燈電源系統之研製 Design and Implementation of 3 kW Short-Arc Xenon Lamp Power Supply System |
指導教授: |
梁從主
Liang, Tsorng-Juu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 短弧氙燈 、錯相式功率因數修正器 、全橋串聯諧振轉換器 |
外文關鍵詞: | short-arc xenon lamps, interleaved boost converter, full-bridge series resonant converter |
相關次數: | 點閱:124 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中研製一兩級式短弧氙燈電源系統,系統前級為錯相式升壓型功率因數修正電路,用以提高系統之功率因數並降低輸入電流諧波失真;後級採用全橋隔離式諧振轉換器及返馳式轉換器,用以提供短弧氙燈一點燈高壓及穩態直流電流。本論文首先簡介短弧氙燈之特性,並討論功率因數修正電路與全橋諧振轉換電路之動作原理,接著分析短弧氙燈高壓啟動電路。最後,實作一輸入電壓220 vac ~ 264 vac、輸出電壓30 VDC之3 kW短弧氙燈電源以測試與驗證理論之正確性。實驗結果顯示,功率因數轉換器之滿載效率達95.8 %以上,且功率因數可達0.96以上,全橋諧振轉換器效率最高為93%,整體系統效率可達到85%以上。
A two-stage short-arc xenon lamps power system is designed and implemented in this thesis. The front stage of this system is an interleaved boost power factor corrector, which is used to improve power factor and reduce input current harmonic distortion. An isolated full-bridge resonant converter and a flyback converter are adopted in the rear stage, which can provide a starting voltage and a stable DC current to the short-arc xenon lamps. The characteristics of short-arc xenon lamp are introduced first. Then, the operational principles of the power factor corrector and full-bridge resonant converter are discussed in detail. The high voltage starting method of short-arc xenon lamp is also be discussed and analyzed. Finally, a short-arc xenon lamps power system with rated power of 3 kW and output voltage of 30 VDC is implemented and tested at input voltage 220 vac ~ 264 vac to validate its feasibility. According to the experimental result, the maximum conversion efficiency of the power factor correction at full load is over 95.8% and the power factor is over 0.96. The maximum conversion efficiency of full-bridge resonant converter is 93%, and the system efficiency is more than 85%
[1]T. J. Liang and M. H. Chen, “Two-stage high-power-factor electronic ballast for metal-halide lamps,” IEEE Trans. on Power Electronics, vol. 24, No.12, pp.787-795, December. 2009.
[2]OSRAM, “Theater lamps”.
[3]OSRAM, “Xenon short arc lamps photo optics”
[4]P. W. Lee, Y. S. Lee, D. K. Cheng, and X. C. Liu, “Steady-state analysis of an interleaved boost converter with coupled inductor,” IEEE Trans. on Industrial Electronics, vol. 47, No.4, pp.787-795, August. 2000.
[5]F. Yang, X. Ruan, Y. Yang, and Z. Ye, “Interleaved critical current mode boost PFC converter with coupled inductor,” IEEE Trans. on Power Electronics, vol. 26, No.9, pp.2404-2413, Sep. 2011.
[6]Y. L. Chen, H. J. Chen, Y. M. Chen, and K. H. Liu, “A stepping on-time adjustment method for interleaved multichannel PFC converters,” IEEE Trans. on Power Electronics, vol. 30, No.3, pp.1170-1176, March. 2015.
[7]Z. Zhang, C. Xu, and Y. F. Liu, “A digital adaptive discontinuous current source driver for high-frequency interleaved boost PFC converters,” IEEE Trans. on Power Electronics, vol. 29, No.3, pp.1298-1310, March. 2014.
[8]Y. S. Roh, Y. J. Moon, J. Park, and C. Yoo, “A two-phase interleaved power factor correction boost converter with a variation-tolerant phase shifting technique,” IEEE Trans. on Power Electronics, vol. 29, No.2, pp.1032-1040, Feb. 2014.
[9]H. Choi and L. Balogh, “A cross-coupled master-slave interleaving method for boundary conduction mode (BCM) PFC Converters, ” IEEE Trans. on Power Electronics, vol. 27, No.10, pp.4202-4211, Oct. 2012.
[10]B. Su, J. Zhang, and Z. Lu, “Totem-pole boost bridgeless PFC rectifier with simple zero-current detection and full-range ZVS operating at the boundary of DCM/CCM, ” IEEE Trans. on Power Electronics, vol. 26, No. 2, pp.427-435, Feb. 2011.
[11]F. Musavi, W. Eberle, and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. on Power Electronics, vol. 47, No. 4, pp.1833-1843, July. 2011.
[12]H. J. Kim, G. S. Seo, B. H. Cho, and H. Choi, “A simple average current control with on-time double for multiphase CCM PFC converter,” IEEE Trans. on Power Electronics, vol. 30, No. 3, pp.1683-1693, March. 2015.
[13]A. K. S. Bhat, “Analysis optimization and design of a series-parallel resonant converter,” in Proc. IEEE APEC, pp. 155-164, 1990.
[14]K. H. Liu and F. C. Lee., “Zero-voltage switching technique in DC-DC converters,” IEEE Trans. on Industrial Electronics, vol. 5, no. 3, pp. 293-304 1986.
[15]R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Trans. on Power Electronics, vol. 13, no. 2, pp. 174-182, 1988.
[16]R. Oruganti and T. C. How, “Resonant-tank control of parallel resonant converter,” IEEE Trans. on Power Electronics, vol. 8, no. 2, pp. 127-134, 1993.
[17]R. Liu and C. Q. Lee, “Analysis and design of LLC-type series resonant converter,” Electronics Letters, vol. 24, no. 24, pp. 1517-1519, 1988.
[18]J. F. Lazar and R. Martinelli “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE APEC, vol. 2, pp. 728-735, 2001.
[19]B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC-DC conversion,” in Proc. IEEE APEC, vol. 2, pp. 1108-1112, 2002.
[20]B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. Wyk, “Optimal design methodology for LLC resonant converter,” in Proc. IEEE APEC, 2006, pp. 533–538.
[21]R. Liu and C. Q. Lee, “Analysis and design of LLC-type series resonant converter,” Electronics Letters, vol. 24, no. 24, pp. 1517-1519, 1988.
[22]J. F. Lazar and R. Martinelli “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE APEC, vol. 2, pp. 728-735, 2001.
[23]O. P. Mandhana and R. G. Hoft, “Steady state frequency domain analysis of parallel-series resonant converter,” in Proc. IEEE APEC, pp. 229-236, 1992.
[24]H. Matsumori, T. Kosaka, K. Sekido, K. Kim, T. Egawa, and N. Matsui, “Isolated DC-DC converter utilizing GaN power device for automotive application,” in Proc. IEEE APEC, pp. 1704-1709, 2019.
[25]R. Chen and S. Y. Yu, “A high-efficiency high-power-density 1MHz LLC converter with GaN devices and integrated transformer,” in Proc. IEEE APEC, pp. 791-796, 2018.
[26]A. Amirahmadi, M. Domb, and E. Persson, “High power density high efficiency wide input voltage range LLC resonant converter utilizing E-mode GaN switches,” in Proc. IEEE APEC, pp. 350-354, 2017.
[27]Y. K. Lo and J. Y. Lin, “Active-clamping ZVS flyback converter employing two transformers,” IEEE Trans. on Power Electron., vol. 22, no. 6, pp. 2416-2423, Nov. 2007.
[28]H. Wu, L. Chen, and Y. Xing, “Secondary-side phase-shift-controlled dual-transformer-based asymmetrical dual-bridge converter with wide voltage gain,” IEEE Trans. on Power Electron., vol. 30, no. 10, pp. 5381-5392, Oct. 2015.
[29]M. Narimani and G. Moschopoulos, “A new single-phase single-stage three-level power-factor-correction AC–DC converter with phase-shift modulation,” IEEE Trans. on Ind. Electron., vol. 60, no. 9, pp. 3731-3735, Jun. 2012.
[30]Texas Instruments, “Interleaving continuous conduction mode PFC controller (UCC28070),”Data Sheet, 2008.