| 研究生: |
李明憲 Li, Ming-Sian |
|---|---|
| 論文名稱: |
應用脈衝式都卜勒微波雷達偵測近岸碎波位置 Application of Pulsed Doppler Microwave Radar Nearshore Breaking Wave Detection |
| 指導教授: |
賴泉基
Lai, Cyuan-Ji 呂珍謀 Lyu, Jhen-Mou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 脈衝式都卜勒微波雷達 、回波雷達截面積 、回波都卜勒頻率偏移 、回波都卜勒頻帶寬度 |
| 外文關鍵詞: | Doppler bandwidth, Doppler frequency, radar cross section, Pulsed Doppler microwave radar |
| 相關次數: | 點閱:69 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碎波的發生影響近岸區域內之流場甚巨,在海岸工程、海洋工程及港灣工程等方面皆佔有舉足輕重的角色。然而,由於影響海面上碎波發生之機制過於複雜,一直以來均無合適的理論及工具可以用來得知海面上實際發生碎波之位置,隨著科技的進步,遙測技術的發展漸趨成熟,故將脈衝式都卜勒微波雷達遙測系統應用於近岸區域內海表面發生碎波位置之偵測。
本文於台北縣貢寮鄉福隆村雙溪河口附近,使用脈衝式都卜勒微波雷達系統來進行近岸波浪之觀測。由於同一測線上,雷達回波會因雷達照射區域內目標散射物之特性不同而有不同的特徵,利用此特性,分析雷達回波之雷達截面積、都卜勒頻率偏移量、都卜勒頻帶寬度於測線上之不同特徵,便可對近岸波浪進行觀測。文中利用各測線上觀測所得的結果內插出雷達掃描的範圍,並將各測線上出現不同特徵處與現場實地的環境相互對照,最後將各測線上產生最大雷達截面積與最大都卜勒頻率偏移之位置依次連接,便能將近岸海域中波浪發生碎波之位置,直接標定於空間座標系統中。
比較本文提出之方法與傳統量測方法可知,利用脈衝式都卜勒微波雷達系統進行近岸波浪之觀測,在時間上,可快速地完成整個偵測的流程;在空間上,相較於傳統單點式觀測,可對距離雷達天線處2公里範圍內,進行整個海面上之觀測作業,且對現場調查人員及儀器設備而言,較無發生意外之顧慮。
The occurrence of wave breaking on the sea surface effects the flow fields significantly in the nearshore region, and it is believed to play an important role in the coastal engineering, ocean engineering, harbor engineering, and so on. However, the mechanisms for causing the waves to break on the ocean surface are complicated to derive and measure the location where waves break. As the science and technology progress, the techniques of remote sensing get more and more developed. The use of the pulsed Doppler microwave radar system becomes a possible way to detect where waves break on the nearshore sea surface.
In this paper, we use the pulsed Doppler microwave radar system to observe the nearshore waves nearby the Shuang-Si estuary at Fu-Long village, Gong-Liao township, Taipei county. Along the same measuring line, the character of subjective scatterers under the radar illuminated area changes and the features of radar backscatter will be different. The analysis of radar backscatter involved radar cross section, Doppler frequency shift, and Doppler bandwidth from the sea surface was accomplished. Eventually, the maximum radar cross section and Doppler frequency shift on the same measuring line, and connect the position on every measuring line respectively. The radar system was shown the capability to delineate the location of breaking wave clearly.
Compared with the traditional measurement, in aspect of time, the application of pulsed Doppler microwave radar system for nearshore wave observation can accomplish a detection case promptly within 20 minutes; furthermore, in aspect of space, it can scan as far as 2 kilometer that is sufficient for most nearshore events to achieve a measurement operation. Significantly, it is safe and secure for investigators and instruments that they can accomplish all detective operation successfully.
1.白光弘,「天線原理及應用」,明文書局(1992)。
2.向敬成,張明友,「雷達系統」,五南圖書出版股份有限公司(2004)。
3.李明靜,「河川表面流速與流量非接觸式量測方法之發展及應用」,博士論文,國立成
功大學水利及海洋工程研究所(2003)。
4.李素芳,「台灣的海岸」,遠足文化事業有限公司(2001)。
5.洪立強,「都卜勒微波雷達雙雷達遙測系統應用之研究」,碩士論文,國立成功大學水
利及海洋工程研究所(2003)。
6.郭一羽,「海岸工程學」,文山書局(2003)。
7.郭金棟,「海岸工程」,中國土木水利工程學會(1995)。
8.陳家樺,「都卜勒微波雷達系統應用於港口流場量測之研究」,碩士論文,國立成功大
學水利及海洋工程研究所(2004)。
9.梅錫,「測量學」,東華書局(1991)。
10.張智星,「MATLAB 程式設計與應用」,清蔚科技出版社(2000)。
11.湯麟武,「港灣及海域工程」,中國土木水利工程學會(1994)。
12.劉樹珊,「微波與雷達」,雲陽出版社(1983)。
13.賴泉基,「應用微波雷達系統於河道水面流速及流量之量測」,經濟部水利處規劃試驗
所,國立成功大學水利及海洋工程學系九十年度學術研究成果雙邊論文研討會
(1998)。
14.Bass, F. G., I. M. Fuks, A. I. Kalmykov, I. E. Ostrovsky, and A. D.
Rosenberg, “Very high frequency radiowave scattering by a disturbed sea
surface, II, Scattering from an actual sea surface,” IEEE Trans. Antennas
Propag., AP16, 560~568, 1968.
15.Frasier, S. J., Y. Liu, and R. E. McIntosh, “Space-time properties of
radar sea spikes and their relation to wind and wave condition,” Journal
of Geophysical Research, Vol. 103, No. C9, pp. 18745~18757, Aug. 15, 1998.
16.Haller M. C., and D. R. Lyzenga, “Comparison of radar and video
observations of shallow water breaking waves,” IEEE Transactions on
Geoscience and Remote Sensing, Vol. 41, No. 4, pp. 832~844, Apr., 2003.
17.Jessup A. T., “Detection and characterization of deep water wave breaking
using moderate incidence angle microwave backscatter from the sea
surface,” Ph.D. thesis, Mass. Inst. of Technol./Woods Hole Oceanogr. Inst.
Woods Hole, Joint Program in Oceanogr. and Oceanogr. Eng., Mass., pp. 344,
1990.
18.Jessup A. T., W.K. Melville, and W. C. Keller, “Breaking Waves Affecting
Microwave Backscatter 1. Detection and Verification”, Journal of
Geophysical Research, Vol. 96, No. C11, pp. 20547~20559, Nov. 15, 1991.
19.Katzin, M., “On the mechanism of radar sea clutter,” Proc. IRE, Vol. 45,
pp. 44-54, 1957.
20.Keith, S., “Essentials of Ocean Science,” Wiley, New York, 1987.
21.Larson, T. R., and J. W. Wright, “Wind-generated gravity-capillary waves:
Laboratory measurements of temporal growth rates using microwave
backscatter,” Journal of Fluid Mechanics, Vol. 70, 417~436, 1975.
22.Lee, H. Y., “Doppler measurements of the effect of gravity waves on wind-
generated ripples,” Journal of Fluid Mechanics, Vol. 81, 225~240, 1977.
23.Long, M. W., “On the two-scatterer theory of sea echo,” IEEE Trans.
Antennas Propag., vol. AP-22, pp. 667~672, 1974.
24.Peters N. J., and R. A. Skop, “Measurements of ocean surface currents from
a moving ship using VHF radar,” Journal of Atmospheric and Oceanic
Technology, Vol. 14, pp. 676~694, 1997.
25.Plant J. W., and J. W. Wright, “Growth and equilibrium of short gravity
waves in a wind-wave tank,” Journal of Fluid Mechanics, Vol. 82, pp.
767~793,1977.
26.Plant J. W., and J. W. Wright, “Spectral decomposition of short gravity
wave systems,” Journal of Phys. Oceanogr., Vol. 9, pp. 621~624, 1979.
27.Plant J. W., and J. W. Wright, “Phase speeds of upwind and downwind
traveling short gravity waves,” Journal of Geophysical Research, Vol. 85,
pp. 3304~3310, 1980.
28.Plant J. W., and W. C. Keller, “Evidence of Bragg scattering in microwave
Doppler spectra of sea return”, Journal of Geophysical Research, Vol. 95,
No. C9, pp. 16299~16310, Sep. 15, 1990.
29.Sullivan, R. J., “Microwave Radar Imaging and Advanced Concepts,” ARTECH
HOUSE INC., 2000.
30.Thurman, H. V., “Essentials of Oceanography,” Merrill Pub. Co., 1993.
31.Wright, J. W. “Backscattering from capillary waves with application to sea
clutter,” IEEE Trans. Antennas Propag., AP-14, pp. 749~754, 1966.
32.Wright, J. W. “A new model for sea clutter,” IEEE Trans. Antennas
Propag., AP-16, pp. 217~233, 1968.
33.Wright, J. W., and W. C. Keller, “Doppler spectra in microwave scattering
from wind waves,” Phys. Fluids, Vol. 14, pp. 466~473, 1971.