| 研究生: |
洪基彬 Horng, Ji-Bin |
|---|---|
| 論文名稱: |
雷射色散特性對位移感測之探討 Laser Dispersive Characteristics Studying for Displacement |
| 指導教授: |
周維揚
Chou, Wei-Yang 蘇炎坤 Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 雷射二極體 、色散 、外腔共振 、位移 、感測 、感測架構 、權重中心法 、增益飽和 、增益頻譜 、正規化回饋光強度 、輸出頻譜權重中心 、簡單小信號近似模型 、自混干涉 、寬頻光源 、非球面透鏡 、全反射面鏡 、分光鏡 、收光準直器 、頻譜儀 |
| 外文關鍵詞: | Indium Phosphorus, Aluminum Gallium Indium Phosphorus, spectrometer, collimator, beam splitter, mirror, aspheric lens, Amplified Stimulated Emission, self-mixing interference, Laser diode, sensing, dispersion, displacement, weight-center method, gain saturation, gain spectrum, normalized feedback intensity, weight-center of spectrum, simple small approximate model |
| 相關次數: | 點閱:155 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種結合光學色散及雷射外腔共振原理的新型高精度非接觸式位移感測法,並進一步探討雷射色散對位移感測之特性;其中,利用雙聚焦搭配單面高反射鍍層雷射二極體的微位移感測架構,以中心波長1550 nm 頻寬60 nm InP增益雷射二極體作Amplified Stimulated Emission (ASE)光源,完成4 μm感測行程,具有2 nm精度的驗證;若以中心波長660 nm 頻寬15 nm AlGaInP增益雷射二極體作ASE光源,則獲得10 μm感測行程內,具有25 nm的精度;同樣以InP增益雷射二極體作ASE光源,於單聚焦撘配單面高反射鍍層雷射二極體位移感測架構下,進行模擬及驗證後,在4 mm感測行程內,則有3 μm的精度。
為快速驗證新型位移感測架構可行性及工程應用的方便性,特提出簡單小信號近似模型,並在模擬結果與實驗數據比對中,得到良好印證;於本研究所提出五種雷射色散位移感測架構中,依所需量測行程及精度要求,可選用合適對應的量測架構操作,如毫米(mm)行程需3 μm精度的量測,可選用單聚焦搭配單面高反射鍍層雷射二極體架構;若行程約40 μm,精度1 μm的量測,可考慮雙聚焦架構;若行程在10 μm以內,精度需求25 nm以內,需考慮雙聚焦搭配單面高反射鍍層雷射二極體架構。
The following research presents a study of an adaptive laser displacement sensor utilizing dispersive wavelength filter. Utilizing commercially available semiconductor gain chip and aspheric lenses, a widely tunable displacement sensor was built. Compared to traditional approach, the displacement sensor in our study featured less components and high dynamic range. The experimental approach could also be applied to optical scanning microscopy with adaptive sensitivity from nanometers to microns, large angled-surface tolerance, and only two-dimensional scan. Here in this investigation we demonstrate experimental results of our displacement sensor operated under middle range, which means a reliable sensitivity of three microns in four millimeters detecting range. Moreover, we present demonstration and analysis of an industrialized design of spatially dispersive displacement sensor, which is composed of an AlGaInP gain chip in visible range, optical assembly, and a spectrum analyzer. The sensor utilizes the spatial dispersion of focus from the optical assembly and wavelength spectrum’s deviation induced by the displacement of the target. As a result, the sensor delivers a quick and simple way in measuring displacement. By adapting the magnification and resolution of the optical assembly, a displacement sensor with middle measurement range, about 10 m, was obtained. However, we should note that 25-nm-resolution is limited by the bandwidth and temperature fluctuation of the gain chip.
1.M. Norgia, S. Donati, “A Displacement-Measuring Instrument Utilizing Self-Mixing Interferometry”, IEEE Trans. Instum Measur., IM-52, 1675-1670 (2003).
2.M. Yokota, A. Asaka, and T. Yoshino, “stabilization improvements of laser-diode closed-loop heterodyne phase-shifting interferometer for surface profile measurement”, Appl. Opt., 42, 1805-1808 (2003).
3.S. Donati, Electro-Optical Instrumentation: Sensing and Measuring with Lasers, Prentice Hall, Upper Saddle River, NJ, Ch.3-4 (2004)
4.M.J. Rudd, “A laser doppler velocimeter employing the laser as a mixer-oscillator,” J. Scientif. Instrum., 1, 723-726 (1968).
5.C. Liu, W. Jywe, and C. Chen, “Development of a Diffraction-Type Optical Triangulation Sensor”, Appl. Opt. 43, 5607-5613 (2004).
6.R. Baribeau and M. Rioux, “Influence of speckle on laser range finders”, Appl. Opt. 30, 2873-2878 (1991).
7.M. Norgia, S. Donati, and D. D’Alessandro, “Interferometric mea- surements of displacement on a diffusing target by a speckle tracking technique”, IEEE J. Quant. Electron., 37, 800–806 (2001).
8.G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer”, Meas. Sci. Technol., 14, 24-32 ( 2003).
9.Peter de Groot, “Unusual techniques for absolute distance measurement”, Opt. Eng. 40, 28-32 (2001)
10.G. Giuliani, S. Donati, and M. Passerini, “Angle measurement by injection detection in a laser diode”, Opt. Eng. 40, 95-99 (2001).
11.S.Shinoara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode”, Appl.Opt., 25, 1417-1419 (1986).
12.F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, “Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue”, Appl. Opt. 31, 5844-5851 (1992)
13.G. Giuliani, M. Norgia, “Laser diode linewidth measurement by means of self-mixing interferometry”, IEEE Photon. Technol. Lett., 12, 1028-1030 (2000).
14.Y. Yu, G. Giuliani, S. Donati, “Measurement of the Linewidth Enhancement Factor of Semiconductor Lasers Based on the Optical Feedback Self-Mixing Effect”, IEEE Photon. Technol. Lett., 16, 990-992 (2004)
15.W.M. Wang, K.T.V. Grattan, A.W. Palmer and W.J.O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications”, J. Lightwave Technol., 12, 1577-1587 (1994).
16.S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity”, IEEE J. Quantum Electron. 31, 113–119 (1995)
17.S. Merlo and S. Donati, “Reconstruction of displacement waveforms with a single-channel laser diode feedback interferometer”, IEEE J. Quantum Electron. 33, 527–531 (1997).
18.T. Bosch, N. Servagent and S. Donati, “Optical feedback interferometry for sensing application”, Optical Engineering, 40, 20-27, January (2001).
19.H. Matsumoto, “Alignment of length-measuring IR laser interferometer using laser feedback”, Appl. Opt. 19, 1-4 (1980).
20.P. J. D. Groot, G. M. Gallatin, and S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode”, Appl. Opt. 27, 4475-4480 (1988).
21.S. Donati and M. Sorel, “A phase-modulated feedback method to test optical isolators assembled into the laser package”, IEEE Photonics Technol. Lett. 8, 405–407 (1996).
22.C. Rembe and R.S. Muller, “Measurement system for full three-dimensional motion characterization of MEMS”, IEEE Journal of Microelectromechanical Systems 11, 479–488 (2002).
23.M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging a critical review of usual technologies for distance measurement”, Opt. Eng. 40, 10-19(2001).
24.G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications”, J. Opt. A, Pure Appl. Opt. 4, 283-294 (2002).
25.J. Hast, R. Myllylä, H. Sorvoja, and J. Miettinen, “Arterial pulsewave shape measurement using self-mixing effect in a diode laser”, Quantum Electron. 32, 975-980 (2002).
26.A. Courteville, T. Gharbi, and J. Y. Cornu, “Noncontact MMG sensor based on the optical feedback effect in a laser diode”, J. Biomed. Opt. 3, 281-285 1998).
27.K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, “Self-mixing in a diode laser as a method for cardiovascular diagnostics”, J. Biomed. Opt. 8, 152-160(2003).
28.M. Rioux, G. Bechthold, D. Taylor, and M. Duggan, “Design of a large depth of view three-dimensional camera for robot vision”, Opt. Eng. 26, 1245-1250 (1987).
29.S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics”, Appl. Phys. A: Mater. Sci. Process. 77, 109-111 (2003).
30.V. Annovazzi-Lodi, S. Merlo, and M. Norgia, “Measurement on a micromachined silicon gyroscope by feedback interferometry”, IEEE/ASME Trans. Mechatron., 6, 1-6 (2001).
31.V. Annovazzi-Lodi, S. Merlo, M. Norgia, G. Spinola, B. Vigna, and S. Zerbini, “Optical detection of the Coriolis force on a silicon micromachined gyroscope”, J. MEMS, 12, 540-549 (2003).
32.M. Norgia and S. Donati, “Hybrid opto-mechanical gyroscope with injection- inteferometry readout”, Electron. Lett., 37, 756-758 (2001).
33.R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Electron. 16, 347-355 (1980).
34.A. Higuera (editor): Fiber Optic Sensors, J. Wiley and Sons, 241-265 (2002).
35.C. Lee, H. Mong, and W. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution”, Opt. Lett. 27, 1773-1775 (2002).
36.C.-H. Lee and J. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution”, Opt. Commun. 135, 233-237 (1997).
37.Eugene Hecht, “Optics”, Addison Wesley Longman, Ch.3-5 (1998)
38.K. Kuhn, “Laser Engineering”, Prentice Hall, Upper Saddle River, NJ, Ch.3-5 (1998).
39.Rudolf Kingslake, “Lens Design Fundamentals”, 豪華書局,台灣, Ch.2 (1980)
40.ZEMAX, “Optica Design Program User’s Guide Version 9.0” (2000)
41.J.-B. Horng, W.-Y. Chou, S. Tsau, J. Liao, S.-M. Hsu, C. -L. Chen, K. -C. Chang, and Y. -K. Su, “Spatially dispersive displacement sensor utilizing a semiconductor gain chip”, Appl. Opt. 46, 680-684 (2007)
42.Ji-Bin Horng , Jay Liao , Yao-Jun Tsai, Yen-Chen Huang, Chieh Hu, Seth Tsau , Yan-Kuin Su , and Wei-Yang Chou, “Analysis of a Spatially Dispersive Displacement Sensor Utilizing an AlGaInP chip”, Applied Optics , 46, 6218-6222 (2007).