| 研究生: |
邱彥儒 Chiu, Yen-Ju |
|---|---|
| 論文名稱: |
探討抗憂鬱藥對高脂飲食誘發的代謝疾病老鼠之影響 Evaluating the beneficial effects of antidepressant treatment on high-fat diet induced metabolic disorders in mice |
| 指導教授: |
陳韻雯
Chen, Yun-wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 百憂解 、第二型糖尿 、代謝疾病 、憂鬱症 |
| 外文關鍵詞: | fluoxetine, type 2 diabetes, metabolic disorder, depression |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第二型糖尿病是一種慢性代謝疾病,特徵包含胰島素阻抗以及胰臟受損。有研究指出患有第二型糖尿病的病人有更高的風險罹患憂鬱症。有研究指出臨床用的抗憂鬱藥Fluoxetine可有效降低病患體重。於此篇研究,我們想探討Fluoxetine 是否可以同時治療第二型糖尿病以及憂鬱症。於是我們藉著餵食高脂飼料12周(8周大)成功建立了同時患有代謝疾病以及憂鬱行為的老鼠。之後老鼠會每天被注射Fluoxetine持續4周,於四周治療期間發現老鼠的能量攝取比對照組少且體重持續減輕。四周治療結束後發現老鼠的葡萄糖耐受性以及胰島素阻抗被改善了,憂鬱行為也得到緩解。我們進一步發現受Fluoxetine治療的老鼠血中瘦素(leptin)降低了,這可能影響脂肪分解的活性,於是我們發現脂肪分解酵素ATGL與脂肪合成酵素PPARγ的活性下降。我們的研究指出ATGL的表現量下降會增加胰島素的敏感性,PPARγ的表現下降則會導致三酸甘油脂儲存在脂肪的量下降與先前的文獻一致。此外,有研究說明改善周邊胰島素阻抗就可以改善憂鬱行為,於是我們將餵食高脂飼料12周後的老鼠換回正常飲食,4周後發現這些老鼠體重以及代謝疾病包括胰島素阻抗被改善了,但是憂鬱行為卻沒有得到緩解。由此得知Fluoxetine可以有效地治療代謝疾病以及憂鬱症。
Type 2 diabetes is a chronic metabolic disorder characterized by insulin resistance and impaired pancreatic β-cell function. Many studies had demonstrated that patients with type 2 diabetes mellitus have more risk to develop depression. Fluoxetine, a selective serotonin reuptake inhibitor, is drug for mood and anxiety disorders. Previous studies showed that fluoxetine can induce weight loss in non-depressed clinically overweight individuals. In this study, we want to investigate whether fluoxetine could be a therapeutic drug against diabetes associated depression. We generated metabolic disorders and depressed mouse model by feeding high-fat diet (HFD) for 12 weeks from 8 weeks of age. Then, Mice were intraperitoneally injected once daily with fluoxetine for four weeks. Our results showed that obese mice treated with fluoxetine had a reduction in the body weight and calorie intake between treatment periods. Fluoxetine improved the ability of glucose-induced stimulation of insulin secretion and insulin sensitivity in metabolic disorder mice. Moreover, fluoxetine improved HFD-induced depression-like behaviors in mice. In metabolic disorder mice, fluoxetine reduced circulating plasma leptin level, and decreased the expression of ATGL and PPARγ in white adipose tissue. Our data revealed that fluoxetine also reduced the triglyceride synthesis in white adipose tissue.
Furthermore, previous studies suggested that depressive disorder could be improved by reversing insulin resistance. Thus, we designed another protocol to feed mice with normal chow instead of fluoxetine treatment after 12 week HFD. Our results showed that lower fat intake could improve glucose intolerance and insulin intolerance of these mice, in contrast, these mice still displayed depression-like behaviors. Therefore, fluoxetine is a better therapeutic efficacy to treat mice suffer from metabolic disorder and depression-like behaviors.
1. A. Chaudhury et al., Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. (Lausanne) 8, 6 (2017).
2. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 41, S13-s27 (2018).
3. P. Morigny, M. Houssier, E. Mouisel, D. Langin, Adipocyte lipolysis and insulin resistance. Biochimie 125, 259-266 (2016).
4. B. Sharma, Antidepressants: Mechanism of Action, Toxicity and Possible Amelioration. (2017), vol. 3.
5. F. Karpe, J. R. Dickmann, K. N. Frayn, Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60, 2441-2449 (2011).
6. M. Roden et al., Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest. 97, 2859-2865 (1996).
7. S. R. Crespin, W. B. Greenough, 3rd, D. Steinberg, Stimulation of insulin secretion by long-chain free fatty acids. A direct pancreatic effect. The Journal of clinical investigation 52, 1979-1984 (1973).
8. A. S. Al-Goblan, M. A. Al-Alfi, M. Z. Khan, Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes. 7, 587-591 (2014).
9. L. A. Pratt, D. J. Brody, Depression and obesity in the U.S. adult household population, 2005-2010. NCHS data brief, 1-8 (2014).
10. Y. Milaneschi, W. K. Simmons, E. F. C. van Rossum, B. W. J. H. Penninx, Depression and obesity: evidence of shared biological mechanisms. Mol. Psychiatry 24, 18-33 (2019).
11. C. U. Onyike, R. M. Crum, H. B. Lee, C. G. Lyketsos, W. W. Eaton, Is obesity associated with major depression? Results from the Third National Health and Nutrition Examination Survey. Am. J. Epidemiol. 158, 1139-1147 (2003).
12. C. M. Pariante, S. L. Lightman, The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 31, 464-468 (2008).
13. B. S. McEwen, Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873-904 (2007).
14. L. Schmaal et al., Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900-909 (2017).
15. G. Noppe et al., Long-term glucocorticoid concentrations as a risk factor for childhood obesity and adverse body-fat distribution. Int. J. Obes. (Lond.) 40, 1503-1509 (2016).
16. J. Lindroos et al., Human but not mouse adipogenesis is critically dependent on LMO3. Cell Metab. 18, 62-74 (2013).
17. L. Fardet, B. Feve, Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events. Drugs 74, 1731-1745 (2014).
18. K. Soumano et al., Glucocorticoids inhibit the transcriptional response of the uncoupling protein-1 gene to adrenergic stimulation in a brown adipose cell line. Mol. Cell. Endocrinol. 165, 7-15 (2000).
19. J. L. Beaudry, M. C. Riddell, Effects of glucocorticoids and exercise on pancreatic beta-cell function and diabetes development. Diabetes Metab. Res. Rev. 28, 560-573 (2012).
20. S. P. Weinstein, C. M. Wilson, A. Pritsker, S. W. Cushman, Dexamethasone inhibits insulin-stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle. Metabolism 47, 3-6 (1998).
21. A. R. Moschen et al., Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Mol. Med. 17, 840-845 (2011).
22. T. W. Pace, A. H. Miller, Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann. N. Y. Acad. Sci. 1179, 86-105 (2009).
23. Z. Yin et al., Transcriptome analysis of human adipocytes implicates the NOD-like receptor pathway in obesity-induced adipose inflammation. Mol. Cell. Endocrinol. 394, 80-87 (2014).
24. S. W. Paugh et al., NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat. Genet. 47, 607-614 (2015).
25. A. A. van der Klaauw, I. S. Farooqi, The hunger genes: pathways to obesity. Cell 161, 119-132 (2015).
26. H. Krude et al., Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155-157 (1998).
27. H. Biebermann et al., A role for beta-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab. 3, 141-146 (2006).
28. D. Huszar et al., Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131-141 (1997).
29. G. J. Morton, T. H. Meek, M. W. Schwartz, Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15, 367-378 (2014).
30. O. M. Farr, M. A. Tsoukas, C. S. Mantzoros, Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders. Metabolism 64, 114-130 (2015).
31. N. Yamada et al., Impaired CNS leptin action is implicated in depression associated with obesity. Endocrinology 152, 2634-2643 (2011).
32. H. Cui, M. Lopez, K. Rahmouni, The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat. Rev. Endocrinol. 13, 338-351 (2017).
33. N. L. Rasgon, B. S. McEwen, Insulin resistance-a missing link no more. Mol. Psychiatry 21, 1648-1652 (2016).
34. S. Chen et al., Association of depression with pre-diabetes, undiagnosed diabetes, and previously diagnosed diabetes: a meta-analysis. Endocrine 53, 35-46 (2016).
35. M. B. Raeder, I. Bjelland, S. Emil Vollset, V. M. Steen, Obesity, dyslipidemia, and diabetes with selective serotonin reuptake inhibitors: the Hordaland Health Study. J. Clin. Psychiatry 67, 1974-1982 (2006).
36. M. Beyazyuz, Y. Albayrak, O. B. Egilmez, N. Albayrak, E. Beyazyuz, Relationship between SSRIs and Metabolic Syndrome Abnormalities in Patients with Generalized Anxiety Disorder: A Prospective Study. Psychiatry Investig. 10, 148-154 (2013).
37. M. Chávez et al., Metabolic risk in depression and treatment with selective serotonin reuptake inhibitors: are the metabolic syndrome and an increase in cardiovascular risk unavoidable? , (2018), vol. 2, pp. 6.
38. F. de Jonghe, D. P. Ravelli, H. Tuynman-Qua, A randomized, double-blind study of fluoxetine and maprotiline in the treatment of major depression. Pharmacopsychiatry 24, 62-67 (1991).
39. A. Serretti, L. Mandelli, Antidepressants and body weight: a comprehensive review and meta-analysis. J. Clin. Psychiatry 71, 1259-1272 (2010).
40. D. Michelson et al., Changes in weight during a 1-year trial of fluoxetine. Am. J. Psychiatry 156, 1170-1176 (1999).
41. R. W. Fuller, D. T. Wong, Fluoxetine: A serotonergic appetite suppressant drug. Drug Development Research 17, 1-15 (1989).
42. O. F. O'Leary, X. Wu, E. Castren, Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of the ovariectomized rat: role of BDNF signalling. Psychoneuroendocrinology 34, 367-381 (2009).
43. B. Xu et al., Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat. Neurosci. 6, 736-742 (2003).
44. M. Mainardi et al., A sensitive period for environmental regulation of eating behavior and leptin sensitivity. Proc. Natl. Acad. Sci. U. S. A. 107, 16673-16678 (2010).
45. M. L. Wong et al., Clinical outcomes and genome-wide association for a brain methylation site in an antidepressant pharmacogenetics study in Mexican Americans. Am. J. Psychiatry 171, 1297-1309 (2014).
46. G. J. Huang et al., Neurogenomic evidence for a shared mechanism of the antidepressant effects of exercise and chronic fluoxetine in mice. PLoS One 7, e35901 (2012).
47. M. Sairanen, G. Lucas, P. Ernfors, M. Castren, E. Castren, Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J. Neurosci. 25, 1089-1094 (2005).
48. A. H. Mokdad et al., Diabetes trends in the U.S.: 1990-1998. Diabetes Care 23, 1278-1283 (2000).
49. A. H. Mokdad et al., The continuing epidemics of obesity and diabetes in the United States. JAMA 286, 1195-1200 (2001).
50. X. Pi-Sunyer et al., Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care 30, 1374-1383 (2007).
51. R. R. Wing et al., Long-term effects of modest weight loss in type II diabetic patients. Arch. Intern. Med. 147, 1749-1753 (1987).
52. C. A. Maggio, F. X. Pi-Sunyer, The Prevention and Treatment of Obesity: Application to type 2 diabetes. Diabetes Care 20, 1744-1766 (1997).
53. P. Maheux, F. Ducros, J. Bourque, J. Garon, J. L. Chiasson, Fluoxetine improves insulin sensitivity in obese patients with non-insulin-dependent diabetes mellitus independently of weight loss. Int. J. Obes. Relat. Metab. Disord. 21, 97-102 (1997).
54. A. R. G. Proença et al., New concepts in white adipose tissue physiology. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas 47, 192-205 (2014).
55. M. H. Fonseca-Alaniz, J. Takada, M. I. Alonso-Vale, F. B. Lima, [The adipose tissue as a regulatory center of the metabolism]. Arq. Bras. Endocrinol. Metabol. 50, 216-229 (2006).
56. R. S. Ahima, Adipose tissue as an endocrine organ. Obesity (Silver Spring, Md.) 14 Suppl 5, 242s-249s (2006).
57. F. Diraison, E. Dusserre, H. Vidal, M. Sothier, M. Beylot, Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am. J. Physiol. Endocrinol. Metab. 282, E46-51 (2002).
58. C. K. Nye, R. W. Hanson, S. C. Kalhan, Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat. J. Biol. Chem. 283, 27565-27574 (2008).
59. R. A. Coleman, D. P. Lee, Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134-176 (2004).
60. R. H. Wong, H. S. Sul, Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr. Opin. Pharmacol. 10, 684-691 (2010).
61. M. Lafontan et al., Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol. Metab. 19, 130-137 (2008).
62. R. Zimmermann et al., Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383-1386 (2004).
63. G. Haemmerle et al., Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734-737 (2006).
64. A. Lass et al., Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 3, 309-319 (2006).
65. C. Lefevre et al., Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am. J. Hum. Genet. 69, 1002-1012 (2001).
66. S. Reynisdottir et al., Effects of weight reduction on the regulation of lipolysis in adipocytes of women with upper-body obesity. Clin. Sci. (Lond.) 89, 421-429 (1995).
67. J. Stevens, M. H. Green, D. L. Kaiser, S. L. Pohl, Insulin resistance in adipocytes from fed and fasted obese rats: dissociation of two insulin actions. Mol. Cell. Biochem. 37, 177-183 (1981).
68. L. F. Martin et al., Alterations in adipocyte adenylate cyclase activity in morbidly obese and formerly morbidly obese humans. Surgery 108, 228-234; discussion 234-225 (1990).
69. V. Large et al., Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects. J. Lipid Res. 40, 2059-2066 (1999).
70. F. Lonnqvist, P. Arner, L. Nordfors, M. Schalling, Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat. Med. 1, 950-953 (1995).
71. G. Fruhbeck, M. Aguado, J. A. Martinez, In vitro lipolytic effect of leptin on mouse adipocytes: evidence for a possible autocrine/paracrine role of leptin. Biochem. Biophys. Res. Commun. 240, 590-594 (1997).
72. B. Mezuk, W. W. Eaton, S. Albrecht, S. H. Golden, Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care 31, 2383-2390 (2008).
73. R. R. Rubin et al., Elevated depression symptoms, antidepressant medicine use, and risk of developing diabetes during the diabetes prevention program. Diabetes Care 31, 420-426 (2008).
74. M. Meurs et al., Association of Depressive and Anxiety Disorders With Diagnosed Versus Undiagnosed Diabetes: An Epidemiological Study of 90,686 Participants. Psychosom. Med. 78, 233-241 (2016).
75. S. F. Tsai et al., High-fat diet suppresses the astrocytic process arborization and downregulates the glial glutamate transporters in the hippocampus of mice. Brain Res. 1700, 66-77 (2018).
76. X. L. Liu et al., Fluoxetine regulates mTOR signalling in a region-dependent manner in depression-like mice. Sci. Rep. 5, 16024 (2015).
77. S. C. Dulawa, K. A. Holick, B. Gundersen, R. Hen, Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29, 1321-1330 (2004).
78. A. Kosteli et al., Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466-3479 (2010).
79. N. L. Rasgon et al., Common treatment of polycystic ovarian syndrome and major depressive disorder: case report and review. Curr. Drug Targets Immune Endocr. Metabol. Disord. 2, 97-102 (2002).
80. Y. Kurhe, R. Mahesh, Pioglitazone, a PPARγ agonist rescues depression associated with obesity using chronic unpredictable mild stress model in experimental mice. Neurobiol Stress 3, 114-121 (2016).
81. G. Scabia et al., The antidepressant fluoxetine acts on energy balance and leptin sensitivity via BDNF. Sci. Rep. 8, 1781 (2018).
82. G. Schoiswohl et al., Impact of Reduced ATGL-Mediated Adipocyte Lipolysis on Obesity-Associated Insulin Resistance and Inflammation in Male Mice. Endocrinology 156, 3610-3624 (2015).
83. M. Schweiger et al., Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice. Nature communications 8, 14859 (2017).
校內:2024-09-01公開