簡易檢索 / 詳目顯示

研究生: 郭振坤
Kuo, Jenn-Kun
論文名稱: 新型複合雙極板材料與流道形狀對質子交換膜燃料電池性能增強之研究
PEMFC Performance Enhancement Study by using Bipolar Plates of Compound Materials and Novel Shapes of Flow Channels
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 147
中文關鍵詞: 質子交換膜燃料電池射出成型複合雙極板波浪狀流
外文關鍵詞: PEMFC, injection molding process, composite material, wave-like form channel, field synergy principle
相關次數: 點閱:123下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,針對質子交換膜燃料電池之雙極板製作,提出合理可行之設計與分析方法,所探討的高分子材料(Nylon 6)/不銹鋼合金纖維(S316L alloy fiber)進行混煉成複合導電材料,之後利用精密射出成型機快速製作成型,並對複合雙極板進行導電度、SEM觀測、抗壓強度、氣密度、電阻率和整體燃料電池性能測試等影響。實驗結果顯示出複合導電雙極板獲得低成本、導電度、氣密度、耐腐蝕性與機械製作穩定性佳的特性。
    本論文亦探討渠道之壁面在增加波浪狀流道形狀(wave-like form channel)設計下的數值研究,對此流道模式中在不同的操作條件和設計參數下,燃料在氣體流道、氣體擴散層和觸媒層與質子交換膜內部之傳輸行為,模擬氣體在流道中流動、擴散與熱傳現象,並討論在二維與三維七層結構中燃料電池性能之影響。此新型波浪狀流道設計模擬結果顯示出與傳統直流管流道比較,由於其傳輸效果而有較佳性能表現,並可有效將反應生成水帶走。
    對波浪狀流道之熱傳增強分析利用場協同理論來驗證所得的數值解,說明透過速度場與溫度梯度場之間的相互配合可使熱傳量增加,在雷諾數Re=200時波浪狀障礙物協同角平均為70.5度比無障礙物的平均協同角少16度,所以本論文利用場協同理論適當證明了新型流道設計之正確性。

    This paper develops a novel composite material for the bipolar plates in Proton Exchange Membrane Fuel Cells (PEMFCs). In general, the materials used to fabricate PEMFC bipolar plates must be low-cost, easily fabricated, light, strong, mechanically stable, and have a low surface contact resistance. Therefore, this study fabricates bipolar plates using a composite material comprising Nylon-6 and S316L stainless steel alloy fibers. The PEMFC plates are fabricated via an injection molding process, which yields better production rates than coating or treating metal plates with a suitable surface material. It is shown that the developed composite material has a suitable combination of properties and process-ability for PEMFC bipolar plate applications.
    The simulation results show that compared to the straight geometry of a conventional gas flow channel, the wave-like configuration enhances the transport through the porous layer and improves the temperature distribution within the channel. As a result, the PEMFC has an improved fuel utilization efficiency and an enhanced heat transfer performance. This increases the rate at which the oxygen gas is consumed in the fuel cell but improves the electrical performance of the PEMFC. The results show that compared to the conventional straight gas flow channel, the wave-like gas flow channel increases the output voltage and improves the power density.
    Hence, the present numerical results are consistent with the field synergy principle, which states that the convective heat transfer is enhanced when the velocity vector and temperature gradient are closely aligned with one another. At the value of Re=200 considered in the present simulations, the intersection angle of the velocity vector and the temperature gradient in the straight channel is 86.5°. However, in the gas flow channel with the wave-like form geometry, the intersection angle is reduced to 70.5°. The numerical results show that the wave-like geometry are consistent with the field synergy principle.

    摘要 I ABSTRACT III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 符號說明 XIV 第一章、緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 質子交換膜燃料電池基本架構 3 1.4 質子交換膜燃料電池複合材料之文獻回顧 8 1.5 質子交換膜燃料電池數值模擬之文獻回顧 13 1.6 場協同理論之文獻回顧 17 1.7 本文架構 18 第二章、新型雙極板之研發 24 2.1 複合材料研究方法 24 2.2 複合材料製作流程與實驗設備 25 2.3 導電度量測方法 27 2.4 質子交換膜燃料電池系統對供給燃料之輸送壓力和操作溫度 29 2.5 可靠度測試 30 第三章、燃料電池內波浪狀流道之七層模擬分析 38 3.1 燃料電池流場模擬 38 3.2 二維模組統御方程式 39 3.3 二維模組邊界條件 43 3.4 三維模組在PEMFC內波浪狀流道之七層模擬分析 44 3.4.1 三維模組統御方程式 45 3.4.2 三維模組邊界條件 46 3.5 研究規劃 48 3.6 流道形狀設計 48 3-7 相關參數設定 48 第四章、利用場協同理論進行波浪狀流道分析 53 4.1 基本假設 53 4.2 對流熱傳的物理機制 53 4.3 對流熱傳的場協同原理 55 4.4 場協同理論分析流道內熱傳現象 57 4.5 統御方程式 58 4.6 邊界條件 60 第五章、數值方法 66 5.1 概述 66 5.2 格點位置的配置 67 5.3 數值方法 69 5.4 通用守恆方程式(Generic Conservation Equation) 69 5.5 有限容積法 70 5.6 壓力修正方程式 73 5.7 邊界條件之離散 76 5.8 差分方程式解法 77 5.9 解題流程 77 第六章、新型複合材料製作結果與討論性能探討 82 6.1 邊界接觸電阻 83 6.2 高分子複合材料正溫度係數之影響 84 6.3 OCV與功率密度性能測試 85 第七章、波浪狀流道形狀模擬結果與討論 93 7.1 波浪狀流道之數值結果 93 7.2 考慮波浪狀流道浮力項之數值結果 94 7.3 三維模組波浪狀流道之數值結果 96 第八章、直管狀、波浪狀、梯形與階梯狀流道熱傳現象結果與討論 117 8.1 速度場 117 8.2 溫度場 118 8.3 具波浪狀流道對熱傳性能增強與場協同理論分析119 8.4 具梯形與階梯狀流道對熱傳性能增強與場協同理論分析 120 第九章、結論與展望 131 9.1 複合材料研究結論 131 9.2 新型波浪狀流場研究結論 132 9.3 雙極板之流道熱傳現象研究結論 133 9.4 未來研究發展與建議 134 參考文獻 136 自述 145 個人著作 146

    [1] Carrette, L., Friedrich, K.A., Stimming, U. “Fuel cells fundamentals and applications,” Fuel Cells, 1 (1), 5-39.
    [2] Davies, D.P., Adcock, P.L., Turpin, M.T., Rowen, S.J., “Preparation and characterization of microporous Ni coatings as hydrogen evolving cathodes,” Journal of Applied Electrochemistry, 2000, 30,101-111.
    [3] Scholta, J., Rohland, B., Trapp, V., Focken, U., “Investigations on novel low-cost graphite composite bipolar plates,” Journal of Power Sources 1999, 84, 231-234.
    [4] Vielstich, W., Lamm, A., Gasteiger, H.A., “Handbook of fuel cells fundamentals technology and applications,” John Wiley & Sons, England 2003, 3, 286-287.
    [5] Hornung, R., Kappelt, G., “Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells,” Journal of Power Sources 1998, 72, 20-21.
    [6] Hentall, P.L., Lakeman, J.B., Mepsted, G.O., Adcock, P.L., Moore, J.M., “New materials for polymer electrolyte membrane fuel cell current collectors,” Journal of Power Sources 1999, 80, 235-241.
    [7] Makkus, R.C., Janssen, A.H.H., Bruijn, F.A., Mallant, R.K.A.M., “Use of stainless steel for cost competitive bipolar plates in the SPFC,” Journal of Power Sources 2000, 86, 274-282.
    [8] Rio, C.D., Ojeda, M.C., Acosta, J.L., Escudero, M.J., Homtanon, E., Daza, L., “New polymer bipolar plates for polymer electrolyte membrane fuel cells: Synthesis and Characterization,” Journal of Applied Polymer Science 2002, 83, 2817-2822.
    [9] Besmann, T.M., Klett, J.W., Henry, J.J., Lara-Curzio, E., “Carbon / carbon composite bipolar plate for proton exchange membrane fuel cells,” Journal of The Electrochemical Society 2000, 147, 4083-4086.
    [10] Chen, C.K., Kuo, J.K., “Nylon 6/CB polymeric conductive plastic bipolar plates for PEM fuel cells,” Journal of Applied Polymer Science 101 (2006) 3415-3421.
    [11] Kuo, J.K., Chen, C.K., “A novel Nylon-6-S316L fiber compound material for injection molded PEM fuel cell bipolar plates,” Journal of Power Sources 162 (2006) 207-214.
    [12] Wu, M., Shaw, L.L., “On the improved properties of injection-molded, carbon nanotube-filled PET/PVDF blends,” Journal of Power Sources 2004, 136, 37-44.
    [13] Bar-On, I., Kirchain, R., Roth, R., “Technical cost analysis for PEM fuel cells,” Journal of Power Sources 2002, 109, 71-75.
    [14] Che, G., Lakshmi, B.B., Martin, C.R., Fisher, E.R., Ruoff, R.S., “Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method,” Chemistry of Materials 1998, 10, 260-267.
    [15] Che, G., Lakshmi, B.B., Fisher, E.R., Martin, C.R., “Carbon nanotubule membranes for electrochemical energy storage and production,” Letters to Nature 1998, 393, 346-349.
    [16] Yi, J.S., Nguyen, T.V., “Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors,” Journal of The Electrochemical Society 1999, 146, 38-45.
    [17] He, W., Yi, J.S., Nguyen, T.V., “Two-phase flow model of the cathode of PEM fuel cell using interdigitated flow fields,” AICHE Journal 2000, 46, 2053-2064.
    [18] Singh, D., Lu, D.M., Djilali, N., “A two-dimensional analysis of mass transport in proton exchange membrane fuel cells,” International Journal of Engineering Science 1999, 39, 431-452.
    [19] Kazim, A., “Modeling of Performance of PEM Fuel Cell with Conventional and Interdigitated Flow Field,” Journal of The Applied Electrochemistry 1999, 29, 1409-1416.
    [20] Gurau, V., “Two-dimensional model for proton exchange membrane fuel cells,” AIChE Journal 1998, 44, 2410-2422.
    [21] Dagan, G., “Flow and transport in porous formations,” Springer-Verlag, New York 1989.
    [22] Dagan, G., “The generalization of Darcy’s law for non-uniform flows,” Water Resources Research 1979, 15, 1.
    [23] Wang, Z.H., Wang, C.Y., Chen, K.S., “Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells,” Journal of Power Sources 2001, 94, 40-50.
    [24] Rowe, A., Li, X., “Mathematical modeling of proton exchange membrane fuel cells,” Journal of Power Sources 2001, 102, 82-96.
    [25] You, L., Liu, H., “A two-phase flow and transport model for the cathode of PEM fuel cells,” International Journal of Heat and Mass Transfer 2002, 45, 2277-2287.
    [26] Yan, M.W., Soong, C.Y., Chen, F., Chu, H.S., “Effects of flow distributor geometry and diffusion layer porosity on reactant gas transport and performance of proton exchange membrane fuel cells,” Journal of Power Sources 2004, 125, 27-39.
    [27] Tüber, K., Oedegaard, A., Hermann, M., Hebling, C., “Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells,” Journal of Power Sources 2004, 131, 175-181.
    [28] Dutta, S., Shimpalee, S., Van-Zee, J.W., “Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell,” International Journal of Heat and Mass Transfer 2001, 44, 2029-2042.
    [29] Hontañón, E., Escudero, M.J., Bautista, C., García-Ybarra, P.L., Daza, L., “Optimisation of flow field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques,” Journal of Power Sources 2000, 86, 363 - 368.
    [30] Kornyshev, A.A., Kulikovsky, A.A., “Characteristic length of fuel and oxygen consumption in feed channel of polymer electrolyte fuel membrane cells,” Electrochimica Acta 2001, 46, 4389-4395.
    [31] Dohle, H., Kornyshev, A.A., Kulikovsky, A.A., Mergrl, J., Stolten, D., “The current voltage plot of PEM fuel cell with long feed channels,” Electrochemistry Communications 2001, 3, 73-80.
    [32] Jordan, L.R., Shukla, A.K., Behrsing, T., Avery, N.R., Muddle, B.C., Forsyth, M., “Diffusion layer parameters influencing optimal fuel cell performance,” Journal of Power Sources 2000, 86, 250-254.
    [33] Broka, K., Ekdunge, P., “Modeling the PEM fuel cell cathode,” Journal of Applied Electrochemistry 1997, 27, 281-289.
    [34] Liu, H.C., Yan, W.M., Soong, C.Y., Chen, F., “Effects of baffle- blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell,” Journal of Power Sources 2005, 142, 125-133.
    [35] Soong, C.Y., Yan, W.M., Tseng, C.Y., Liu, H.C., Chen, F., Chu, H.S., “Analysis of reactant gas transport in a PEM fuel cell with partially blocked fuel flow channels,” Journal of Power Sources 2005, 143, 36-47.
    [36] Yan, W.M., Chen, F., Wu, H.Y., Soong, C.Y., Chu, H.S., “Analysis of thermal and water management with temperature-dependent diffusion effects in membrane of proton exchange membrane fuel cells,” Journal of Power Sources 2004, 129, 127-137.
    [37] Srinivasan, S., Mankoo, D.J., Koch, H., Enayetullah, M.A., “Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes,” Journal of Power Sources 1988, 29, 367-387.
    [38] Springer, T.E., Zawodinski, T.A., Gottesfeld, S., “Polymer electrolyte fuel cell model,” Journal of The Electrochemical Society 1991, 136, 2334-2342.
    [39] Bernardi, D.M., Verbrugge, M.W., “A mathematical model of the solid-polymer-electrolyte fuel cell,” Journal of The Electrochemical Society 1992, 139, 2477-2491.
    [40] Wang, Z.H., Wang, C.Y., Chen, K.S., “Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells,” Journal of Power Sources 2001, 94, 40-50.
    [41] Berning, T., Liu, D.M., Djilali, N., “Three dimensional computational analysis of transport phenomena in a PEM fuel cell,” Journal of Power Sources 2002, 106, 284-294.
    [42] Lee, W.K., Shimpalee, S., Van Zee, J.W., “Verifying predictions of water and current distributions in a serpentine flow field polymer electrolyte membrane fuel cell,” Journal of The Electrochemical Society 2003, 150, A341.
    [43] Um, S., Wang, C.Y., “Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells,” Journal of Power Sources 2004, 125, 40-51.
    [44] Meng, H., Wang, C.Y., “Electron transport in PEFCs,” Journal of The Electrochemical Society 2004, 151, A358.
    [45] Hwang, J.J., Chao, C.H., Ho, W.Y., Chang, C.L., Wang, D.Y., “Effect of flow orientation on thermal-electrochemical transports in a PEM fuel cell,” Journal of Power Sources 2006, 157, 85-97.
    [46] Hwang, J.J., Chen, P.Y., “Heat/mass transfer in porous electrodes of fuel cells,” International Journal of Heat Mass Transfer 2006, 49, 2315-2327.
    [47] Kuo, J.K., Chen, C.K., “Evaluating the enhanced performance of a novel wave-like form gas flow channel in the PEMFC using the field synergy principle,” Journal of Power Sources 2006, 162, 1122-1129.
    [48] Guo, Z.Y., Li, D.Y., Wang, B.X., “A novel concept for convective heat transfer enhancement,” International Journal of Heat and Mass Transfer 1998, 41, 2221-2225.
    [49] Wang, S., Li, Z.X., Guo, Z.Y., Proceeding of 11th IHTC 1998, 5, 405.
    [50] Tao, W.Q., He, Y.L., Wang, Q.W., Qu, Z.G., Song, F.Q., “A unified analysis on enhancing single phase convective heat transfer with field synergy principle,” International Journal of Heat and Mass Transfer 2002, 45, 4871-4879.
    [51] Tao, W.Q., Guo, Z.Y., Wang, B.X., “Field synergy principle for enhancing convective heat transfer–its extension and numerical verifications,” International Journal of Heat Mass Transfer 2002, 45, 3849-3856.
    [52] 郭平生、華責、韋紹波“溫度場與電場在奇異點熱電效應中的協同”華南理工大學學報 2002,30,7-10。
    [53] 王松平、徐艷芳“強化對流傳質的物理機制及其控制”青島大 學學報 2003,16,32-36。
    [54] 韓光澤、華責、魏耀東“傳遞過程強化的新途徑-場協同”自然雜誌 2002,24,273-277。
    [55] 顏子翔“應用晶格波茲曼法與場協同理論於不同阻礙物之背向階梯管道熱流分析”國立成功大學博士論文,2006。
    [56] Schroger, D.K., “Semiconductor material and device characterization,” Wiley, New York, 1998.
    [57] Mehta, V., Cooper, J.S., “Review and analysis of PEM fuel cell design and manufacturing,” Journal of Power Sources 2003, 114, 32-53.
    [58] Springer, T.E., Wilson, M.S., Gottesfeld, S., “Modeling and experimental diagonstics in polymer electrolyte fuel cells,” Journal of The Electrochemical Society 1993, 140, 3513-3525.
    [59] Patankar, S.V., “Numerical heat transfer and fluid flows,” McGraw-Hill, New York, 1980.
    [60] Van Doormaal, J.P., Raithby, F.D., “Enhancements of the SIMPLE method for tredicting incompressible fluid flows,” Numerical Heat Transfer 1984, 7, 147-163.
    [61] 涂正輝 “質子交換膜燃料電池之三維流道設計與熱質傳分析” 國立成功大學碩士論文,2003。
    [62] Patankar, S.V., “Numerical heat transfer and fluid flow,” Hemisphere Publishing Corporation, 1978.
    [63] CFD-ACE (U), CFD Research Corporation, Alabama, USA, 2002.
    [64] Wang, H., Sweikart, M.A., Turner, J.A., “Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources 2003, 115, 243-251.

    下載圖示 校內:2012-05-22公開
    校外:2017-05-22公開
    QR CODE