簡易檢索 / 詳目顯示

研究生: 李栢任
Lee, Po-Jen
論文名稱: 以本土微藻Chlorella vulgaris FSP-E進行蛋白質生產最適化
Optimizing protein production from an indigenous microalga Chlorella vulgaris FSP-E
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 103
中文關鍵詞: 小球藻微藻蛋白質光生物反應器冷陰極燈管氮源大型培養浸入式光源起始接種量曝氣速率戶外培養
外文關鍵詞: microalgae, Chlorella vulgaris, microalgal protein, photobioreactor, cold cathode fluorescent lamp, nitrogen source, amino acid profile, mass culture, immersed light source, inoculum size, aeration rate, outdoor cultivation
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現行的水產養殖飼料多以添加魚粉作為其蛋白質的主要來源,然而近年來的魚粉供應量逐年萎縮,市場需求量卻持續增加,再加上畜牧業與家禽養殖業對魚粉需求的競爭,導致魚粉價格居高不下,造成水產養殖業成本的提高。因此,近年來各國學者專家無不積極尋求新的魚粉取代物。在眾多魚粉取代物中,微藻是最受矚目的焦點。微藻本身即為水產食物鏈中的一環,且其生質體中含有豐富的蛋白質,經由適當培養策略,蛋白質含量可高達60%以上,再加上各種促進作用,如魚類的免疫系統、脂質代謝等,再加上其高生長速率之特性,使得微藻在水產養殖領域中受到極大的重視,成為最具潛力的魚粉替代品。
    本研究擬以本土小球藻Chlorella vulgaris FSP-E為目標藻種,進行微藻生長與蛋白質生產之優化與規模放大。本研究首先嘗試結合冷陰極管(Cold Cathode Fluorescent Lamp, CCFL)做為內部光源之新穎生物反應器進行微藻培養。其結果顯示,具內部光源之新型光生物反應器其微藻生物量產量(biomass productivity)可達411 mg/L/d,而蛋白質產量為183 mg/L/d,優於傳統血清瓶光生物反應器。本研究亦分別針對培養基中尿素與鐵離子濃度進行優化,結果發現隨著尿素濃度的提高,微藻的生長速率隨之增加,當尿素濃度達12.4 mM時,其生物量產量可達613 mg/L/d。進一步分析微藻蛋白質之胺基酸組成與培養時間及氮源濃度之關係,可發現培養基中之剩餘氮源濃度會對微藻蛋白質之胺基酸組成產生影響,進而改變其營養價值。其結果顯示,當培養基中的氮源消耗量達90 %時,微藻蛋白質含量可達最大值,亦含有最多種類之必需胺基酸,同時其生物量產量亦達到最大值。而當Fe2+濃度控制在90 μM時,能進一步提高微藻生物量與蛋白質產量至699 mg/L/d及365 mg/L/d;同時,亦將微藻蛋白質之必需胺基酸含量提高至60%,能大幅提高其營養價值。
    此外,本研究亦致力於微藻C. vulgaris FSP-E大量培養之優化。於先前所得之最佳條件下,將室內小型生物反應器放大至50公升的直立式管狀反應器,並增加浸入式光源進行光照補償以期解決光遮蔽效應(light shading effect)引起的藻體細胞生長遲緩的問題。結果顯示,增加浸入式光源可明顯提高藻體生物量產量(170 mg/L/d),且蛋白質含量可達細胞乾重的59.6%。本研究進一步改變大型培養的起始接種量,當起始接種量為0.1 g/L時,藻體生物量產量與蛋白質產量分別可達190 mg/L/d和121 mg/L/d。考慮到碳源提供量以及生物反應器內的混和效率,本研究對二氧化碳曝氣速率進行優化。當曝氣速率為0.05 vvm時,可明顯改善反應器內的混合效率,減少反應器底部的藻體沉降量,同時,微藻生產量與蛋白質生產量分別可達到213 mg/L/d與133 mg/L/d。
    最後,本研究將室內50公升管狀生物反應器移至戶外,進行微藻C. vulgaris FSP-E戶外培養之測試。其結果顯示於夏季陽光充足的環境下,其生長速率與室內培養相同,因此,C. vulgaris FSP-E具有相當好的環境適應力。為了進一步提升其表現,同時考慮到室內與戶外的培養環境相差甚大,因此本研究重新測試了數個環境因子。當尿素濃度進一步提高至18.6 mM時,微藻的生物生產量與蛋白質生產量可達到241 mg/L/d與136 mg/L/d。此外,起始接種量亦會對微藻生長速率產生明顯的影響,以0.2 g/L作為起始接種量時,微藻生物量產量與蛋白產量可再進一步提高至258 mg/L/d與149.9 mg/L/d。最後,本研究於曝氣速率優化實驗中發現當曝氣速率高於0.05 vvm後會降低微藻C. vulgaris FSP-E生長速度,因而減少微藻蛋白質生產量。本研究結果顯示高蛋白質含量之微藻C. vulgaris FSP-E具有成為魚粉取代物之潛力與商業化可行性。

    Fishmeal is the most widely used protein source in commercial aquacultural feed. However, due to its unstable production and increasing price, using fishmeal is getting more uneconomical in aquaculture. Therefore, finding its alternatives is in urgent demand. Among the potential fishmeal alternatives, microalgae have been recognized as the most promising one. In this study, a protein-rich indigenous microalgal isolate, identified as Chlorella vulgaris FSP-E was selected for protein production to assess its potential to serve as fishmeal alternative. In the beginning, an innovative photobioreactor combined with cold cathode fluorescent lamps (CCFLs) as internal illumination was designed to improve microalgal protein production. The internal illumination could enhance biomass productivity to 411 mg/L/d, and protein productivity to 183 mg/L/d due to its higher light intensity and reduction of self-shading effect. When the initial urea concentration in the medium was increased to 12.4 mM, the biomass productivity and protein productivity were further improved to 613 mg/L/d and 301 mg/L/d, respectively,. For medium improvement, the culture was conducted under different iron concentrations. The result shows the biomass productivity and protein productivity were enhanced to 699 mg/L/d and 365 mg/L/d, respectively, when using an iron concentration of 90 μM. In addition, the amino acid analysis of the microalgal protein shows that over 60% of protein in the microalga was necessity amino acids. Therefore, the nutritional value of the microalgal protein was enhanced by iron concentration supplement in the growth medium.
    Moreover, the working capacity of microalgae culture was scaled up to 50 liter, while several strategies were applied to enhance the feasibility of mass culture of microalga C. vulgaris FSP-E. The results show that the immersed light source installed inside the tubular photobioreactor resulted in an obvious improvement on overall biomass productivity (up to 170 mg/L/d), while the maximal protein content could reach 59.6% of dry cell weight. Next, the effect of inoculum size was also investigated on the algae-based protein production. The results show that using an inoculum size of 0.1 g/L of C. vulgaris FSP-E resulted in higher biomass and protein productivity of 190 mg/l/d and 121 mg/l/d, respectively. Considering the carbon supply and the mixing efficiency of tubular photobioreactor, different CO2 aeration rate was then adjusted to further enhance the performance of algae-based protein production. The results show that, the biomass and protein productivity were further increased to 213 and 133 mg/L/d, respectively, with an optimal aeration rate of 0.05 vvm.
    To assess the commercial viability, the microalgal cultivation was shifted from indoor to outdoor condition. The results show that a similar growth performance was achieved under outdoor condition when compared to the previous indoor results. Considering the difference between indoor and outdoor conditions, several environmental factors were re-investigated. The biomass productivity and protein productivity were improved to 241 mg/L/d and 136.1 mg/L/d after increasing urea concentration to 18.6 mM. The growth performance could be further enhanced by increasing inoculum size to 0.2 g/L, and the results indicated that the biomass productivity and protein productivity could attain 258 mg/L/d and 149.9 mg/L/d, respectively. After determining the suitable inoculum size, CO2 aeration rate was then adjusted to investigate its effect on the performance of algae-based protein production. However, the results showed that higher aeration rate repressed algal growth, leading to poor protein productivity. The high shear stress resulted from high aeration led to a plummet of microalgae protein production performance. This study demonstrated that C. vulgaris FSP-E is a promising candidate of alternative for fishmeal in aquaculture.

    摘要 II Abstract IV Acknowledgments VII Contents IX List of Tables XII List of Figures XIV Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation and purpose 1 Chapter 2 Literature review 4 2-1 Aquaculture 4 2-2 Introduction to microalgae 5 2-3 Photosynthesis 10 2-4 Microalgae in aquafeed 13 2-4-1 Fishmeal 13 2-4-2 Substitute of fishmeal 18 2-5 Environmental factor of microalgal protein production 22 2-5-1 Light 23 2-5-2 Medium composition 26 2-5-3 Photobioreactor design 29 2-5-4 Mass culture 30 2-5-5 Inoculum size 33 2-5-6 Aeration rate 33 Chapter 3 Materials and methods 34 3-1 Chemicals and materials 34 3-2 Equipment 34 3-3 The analytical methods 35 3-3-1 Determination of microalgae cell concentration 35 3-3-2 Measurement of residual urea concentration 36 3-3-3 Measurement of light intensity and light quality 37 3-3-4 Extraction and determination of the protein content and amino acid profile 38 3-4 Experimental methods 40 3-4-1 Microalgae culture and medium composition 40 3-4-2 Operation of photobioreactor 41 3-4-3 Optimizing urea concentration in the culturing medium 45 3-4-4 Optimizing iron concentration in the culturing medium 45 3-4-5 The effect of inoculum size on mass culture 46 3-4-6 The effect of aeration rate on mass culture 46 Chapter 4 Results and discussion 47 4-1 Engineering strategies for improving protein production using an indigenous microalga Chlorella vulgaris FSP-E 47 4-1-1 Effects of photobioreactor (PBR) type on microalgal growth and protein production performance 47 4-1-2 Effects of nitrogen concentration on microalgal growth and protein production performance 49 4-1-3 Evolution of amino acid profiles of C. vulgaris FSP-E during growth 53 4-1-4 Effects of iron(II) concentration on microalgal growth rate and protein production performance 58 4-1-5 Summary 62 4-2 Scale up of cultivation of Chlorella vulgaris FSP-E for biomass and protein production 63 4-2-1 Internal light compensation with immersed lamp for mass culture 63 4-2-2 Effect of inoculum size on algal growth and protein production 68 4-2-3 Effect of aeration rate on algal growth and protein production 71 4-2-4 Summary 74 4-3 Establishment of the outdoor cultivation system of microalgae C. vulgaris FSP-E in vertical tubular-type photobioreactor for protein production 75 4-3-1 Comparison of growth performance between indoor and outdoor cultivation 75 4-3-2 Effect of medium nitrogen concentration on algal growth and protein production 77 4-3-3 Effect of inoculum size on algal growth and protein production 79 4-3-4 Effect of aeration rate on algal growth and protein production 83 4-3-5 Summary 87 Chapter 5 Conclusions 88 This study conducted a comprehensive investigation on biomass productivity, protein productivity and amino acid profile of an indigenous microalga C.vulgaris FSP-E isolated in southern Taiwan. The results demonstrated that C. vulgaris FSP-E indeed has the potential of serving as a alternatives for fishmeal in aquaculture, and the optimal conditions obtained from this work are reported in an overall concluding figure, as shown in Fig. 5-1-1. 88 References 92 Appendix 102

    Adams, C., & Bugbee, B. (2014). Nitrogen retention and partitioning at the initiation of lipid accumulation in nitrogen-deficient algae. Journal of Phycology, 50(2), 356-365.
    Anderson, S. M., & Roels, O. A. (1981). Effects of light intensity on nitrate and nitrite uptake and excretion by Chaetoceros curvisetus. Marine Biology, 62(4), 257-261.
    Avila‐Leon, I., Chuei Matsudo, M., Sato, S., & De Carvalho, J.C.M. (2012). Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. Journal of applied microbiology, 112(6), 1086-1094.
    Becker, E.W. (1994). Microalgae: biotechnology and microbiology (Vol. 10): Cambridge University Press.
    Bertling, K., Hurse, T.J., Kappler, U., & Rakić, A.D. (2006). Lasers—an effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria. Biotechnology and Bioengineering, 94(2), 337-345.
    Bishop, N.I. (1964). Site of action of copper in photosynthesis. Nature, 204(4956), 401-402.
    Borowitzka, M.A. (1988). Fats, oils and carbohydrates. In M. A. Borowitzka & L. J. Borowitzka (Eds.), Microalgal biotechnology (pp. 257-287): Cambridge University.
    Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and sustainable energy reviews, 14(2), 557-577.
    Brown, M.R. (2002). Nutritional value and use of microalgae in aquaculture. Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola, 3, 281-292.
    Bryan, G.W., & Bogorad, L. (1963). Protochlorophyll and chlorophyll formation in response to iron nutrition in a Chlorella mutant Studies on Microalgae and Photosynthetic Bacteria (pp. 399-405). Tokyo: Tokyo University.
    Butler, W. R., Calaman, J. J., & Beam, S. W. (1996). Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle. Journal of Animal Science, 74(4), 858-865.
    Carvalho, A.P., & Malcata, F.X. (2001). Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow‐fiber modules. Biotechnology progress, 17(2), 265-272.
    Carvalho, A.P., Meireles, L.A., & Malcata, F.X. (2006). Microalgal reactors: a review of enclosed system designs and performances. Biotechnology progress, 22(6), 1490-1506.
    Carvalho, A.P., Silva, S.O., Baptista, .M., & Malcata, F.X. (2011). Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Applied Microbiology and Biotechnology, 89(5), 1275-1288.
    Chen, C.Y., Chen, Y.C., Huang, H.C., Huang, C.C., Lee, W.L., & Chang, J.S. (2013). Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2. Bioresource Technology, 147(0), 160-167.
    Chen, C.Y., Kao, P.C., Tsai, C.J., Lee, D.J., & Chang, J.S. (2013). Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource Technology, 145(0), 307-312.
    Choi, J.A., Hwang, J.H., Dempsey, B. A., Abou-Shanab, R.A.I., Min, B., Song, H., . . . Hong, S.K. (2011). Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy & Environmental Science, 4(9), 3513-3520.
    Dai, Z.L., Wu, Z.L., Jia, S.C., & Wu, G.Y. (2014). Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. Journal of Chromatography B(0).
    Darley, W. Marshall. (1982). Algal biology : a physiological approach. Oxford: Blackwell Scientific Publications.
    Davis, E.A., Dedrick, J., French, C.S., Milner, H.W., Myers, J., Smith, J.H.C., & Spoehr, H.A. (1953). Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington Department of plant biology (pp. 105): Publ.
    De Pauw, N., Morales, J., & Persoone, G. (1984). Mass culture of microalgae in aquaculture systems: progress and constraints. Hydrobiologia, 116(1), 121-134.
    Ding, Y., He, S., Teixeira da Silva, J.A., Li, G., & Tanaka, M. (2010). Effects of a new light source (cold cathode fluorescent lamps) on the growth of tree peony plantlets in vitro Scientia horticulturae, 125(2), 167-169.
    Dominguez, H. (2013). Functional ingredients from algae for foods and nutraceuticals: Elsevier.
    Dortch, Q., Clayton Jr, J.R., Thoresen, S.S., & Ahmed, S.I. (1984). Species differences in accumulation of nitrogen pools in phytoplankton. Marine Biology, 81(3), 237-250.
    Dragone, G., Fernandes, B.D., Abreu, A.P., Vicente, A.A., & Teixeira, J.A. (2011). Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 88(10), 3331-3335.
    El-Sayed, & Abdel-Fattah, M. (1999). Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture, 179(1–4), 149-168.
    Estevez, M.S., Malanga, G., & Puntarulo, S. (2001). Iron-dependent oxidative stress in Chlorella vulgaris. Plant Science, 161(1), 9-17.
    Eyster, C. (1962). Requirements and functions of micronutrients by green plants with respect to photosynthesis Biologistics for Space Systems Symposium (pp. 199-210).
    Feng, P.Z., Deng, Z.Y., Hu, Z.Y., & Fan, L. (2011). Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresource Technology, 102(22), 10577-10584.
    Fidalgo, J. P., Cid, A., Torres, E., Sukenik, A., & Herrero, C. (1998). Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture, 166(1–2), 105-116.
    Fogg, G.E. (1987). Algal cultures and phytoplankton ecology: Univ of Wisconsin Press.
    Food and Agriculture Organization of the United Nations, FAO. (2008). Food Outlook Global Market Analysis: Food and Agriculture Organization Rome, Italy.
    Furuya, W.M., Pezzato, L.E., Barros, M.M., Pezzato, A.C., Furuya, V.R.B., & Miranda, E.C. (2004). Use of ideal protein concept for precision formulation of amino acid levels in fish‐meal‐free diets for juvenile Nile tilapia (Oreochromis niloticus L.). Aquaculture Research, 35(12), 1110-1116.
    Galling, G. (1963). Analyse des Magnesium-Mangels bei synchronisierten Chlorellen. Archiv für Mikrobiologie, 46(2), 150-184.
    Gatlin, Delbert M, Barrows, Frederic T, Brown, Paul, Dabrowski, Konrad, Gaylord, T Gibson, Hardy, Ronald W, . . . Nelson, Richard. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, 38(6), 551-579.
    Gozdowska, M., Sokołowska, E., & Kulczykowska, E. (2003). Plasma Ca2+ concentration limits melatonin night production in two fish species. Journal of fish biology, 62(6), 1405-1413.
    Grant, B.R., & Turner, I.M. (1969). Light-stimulated nitrate and nitrite assimilation in several species of algae. Comparative Biochemistry and Physiology, 29(3), 995-1004.
    Guedes, A.C., & Malcata, F.X. (2012). Nutritional value and uses of microalgae in aquaculture. Aquaculture, 10(1516), 59-78.
    Hardy, R.W. (2010). Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, 41(5), 770-776.
    Hase, E. (1962). Cell division. In R. A. Lewin (Ed.), Physiolgy and Biochemistry of Algae (pp. 617-624). New York.
    Hemaiswarya, S., Raja, R., Ravi Kumar, R., Ganesan, V., & Anbazhagan, C. (2010). Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27(8), 1737-1746.
    Ho, S.H., Chang, J. S., Lai, Y.Y, & Chen, C.N.N. (2014). Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions. Bioresource Technology.
    Ho, S.H., Chen, C.Y., & Chang, J.S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource technology, 113, 244-252.
    Ho, S.H., Huang, S.W., Chen, C.Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013a). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135(0), 191-198.
    Ho, S.H., Huang, S.W., Chen, C.Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013b). Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresource Technology, 135(0), 157-165.
    Hsueh, H.T., Chu, H., & Yu, S.T. (2007). A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere, 66(5), 878-886.
    Hussein, E.E., Dabrowski, K., El-Saidy, D.M.S.D., & Lee, B.J. (2012). Effect of dietary phosphorus supplementation on utilization of algae in the grow-out diet of Nile tilapia Oreochromis niloticus. Aquaculture Research, n/a-n/a.
    Illman, A.M., Scragg, A.H., & Shales, S.W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and microbial technology, 27(8), 631-635.
    Iriani, D., Suriyaphan, O., & Chaiyanate, N. (2011). Effect of iron concentration on growth, protein content and total phenolic content of Chlorella sp cultured in Basal medium. Sains Malaysiana, 40(4), 353-358.
    Jackson, A.J. (2006). The importance of fishmeal and fish oil in aquaculture diets. International Aquafeed, 9(6), 18-21.
    Jackson, A.J. (2007). Challenges and opportunities for the fishmeal and fish oil industry. Feed Technology Update, 2(1), 9.
    Jiang, Y., Yoshida, T., & Quigg, A. (2012). Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiology and Biochemistry, 54, 70-77.
    Kaewpintong, K., Shotipruk, A., Powtongsook, S., & Pavasant, P. (2007). Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresource Technology, 98(2), 288-295.
    Kaplan, D., Richmond, A.E., Dubinsky, Z., & Aaronson, A. (1986). Algal nutrition. In A. Richmond (Ed.), Handbook of Microalgal Mass Culture (pp. 147-198). Boca Raton: CRC Press.
    Kim, T. H., Lee, Y., Han, S. H., & Hwang, S. J. (2013). The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour Technol, 130, 75-80.
    Kovač, D.J., Simeunović, J.B., Babić, O.B., Mišan, A. Č., & Milovanović, I.L. (2013). Algae in food and feed. Food Feed Res, 40, 21-32.
    Lau, P. S., Tam, N. F. Y., & Wong, Y. S. (1995). Effect of algal density on nutrient removal from primary settled wastewater. Environmental Pollution, 89(1), 59-66.
    Lee, R.E. (1989). Phycology: Cambridge University Press.
    Li, C.L., Yang, H.L., Li, Y.J., Cheng, L.P., Zhang, M., Zhang, L., & Wang, W. (2013). Novel bioconversions of municipal effluent and CO2 into protein riched Chlorella vulgaris biomass. Bioresource technology, 132, 171-177.
    Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C.Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4), 629-636.
    Lillo, C. (2004). Light regulation of nitrate uptake, assimilation and metabolism Nitrogen Acquisition and Assimilation in Higher Plants (pp. 149-184): Springer.
    MacIsaac, J.J., & Dugdale, R.C. (1972). Interactions of light and inorganic nitrogen in controlling nitrogen uptake in the sea. Paper presented at the Deep Sea Research and Oceanographic Abstracts.
    McGlathery, K.J., Pedersen, M.F., & Borum, J. (1996). Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (chlorophyta) Journal of Phycology, 32(3), 393-401.
    Millamena, O.M. (2002). Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides. Aquaculture, 204(1–2), 75-84.
    Millamena, O.M., Bautista-Teruel, M.N., Reyes, O.S., & Kanazawa, A. (1998). Requirements of juvenile marine shrimp Penaeus monodon (Fabricius) for lysine and arginine. Aquaculture, 164(1), 95-104.
    Molina, E., Fernández, J., Acién, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92(2), 113-131.
    Molina, G.E., Fernández, F.G.A., Garcı́a, C.F., & Chisti, Y. (1999). Photobioreactors: light regime, mass transfer, and scaleup. Journal of Biotechnology, 70(1–3), 231-247.
    Morrissey, j., & Bowler, C. (2012). Iron utilization in marine cyanobacteria and eukaryotic algae. Environmental Bioinorganic Chemistry of Aquatic Microbial Organisms, 90.
    Mostafa, S. (2012). Microalgal biotechnology: prospects and applications. Plant Science.
    Muller-Feuga, A. (2000). The role of microalgae in aquaculture: situation and trends. Journal of Applied Phycology, 12(3-5), 527-534.
    Nandeesha, M. C., Gangadhar, B., Varghese, T. J., & Keshavanath, P. (1998). Effect of feeding Spirulina platensis on the growth, proximate composition and organoleptic quality of common carp, Cyprinus carpio L. Aquaculture Research, 29(5), 305-312.
    Nasseri, A.T., Rasoul-Amini, S., Morowvat, M.H., & Ghasemi, Y. (2011a). Single Cell Protein Production and Process. American Journal of Food Technology, 6, 14.
    Nasseri, A.T., Rasoul-Amini, S., Morowvat, M.H., & Ghasemi, Y. (2011b). Single cell protein: production and process. American Journal of food technology, 6(2), 103-116.
    National Research Council , N.R.C. (1993). Nutrient Requirements of Fish: National Academy Press.
    Nichols, D.S. (2003). Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. FEMS microbiology letters, 219(1), 1-7.
    O'Kelley, J.C., & Herndon, W.R. (1961). Alkaline Earth Elements and Zoospore Release and Development in Protosiphon botryoides. American Journal of Botany, 48(9), 796-802.
    Ogbonna, J.C., & Tanaka, H. (2000). Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors. Journal of Applied Phycology, 12(3-5), 207-218.
    Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35-42.
    Pirson, A., & Boger, P. (1965). Correlation of chlorophyll with insoluble protein of the chloroplast in green algae. Nature, 205(4976), 1129-1130.
    Pongmaneerat, J., & Watanabe, T. (1994). Replacement of fish meal by alternative protein sources in rainbow trout diets. Paper presented at the Proceeding of the Seminar on Fisheries 1993 Department of Fisheryies, Bangkok (Thailand), 15-17 Sep 1993.
    Pratoomyot, J., Bendiksen, E.Å, Campbell, P.J., Jauncey, K.J., Bell, J. G., & Tocher, D.R. (2011). Effects of different blends of protein sources as alternatives to dietary fishmeal on growth performance and body lipid composition of Atlantic salmon (Salmo salar L.). Aquaculture, 316(1–4), 44-52.
    Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57(3), 287-293.
    Qiang, H., & Richmond, A. (1994). Optimizing the population density inIsochrysis galbana grown outdoors in a glass column photobioreactor. Journal of Applied Phycology, 6(4), 391-396.
    Rhee, G.Y. (1978). Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr, 23(1), 10-25.
    Richmond, A. (1990). Large scale microalgal culture and applications. In F. E. Round & D. J. Chapman (Eds.), Progress in Phycological Research (pp. 269-330). Bristol: Biopress.
    Richmond, A. (2008). Handbook of microalgal culture: biotechnology and applied phycology: John Wiley & Sons.
    Richmond, A., Boussiba, S., Vonshak, A., & Kopel, R. (1993). A new tubular reactor for mass production of microalgae outdoors. Journal of Applied Phycology, 5(3), 327-332.
    Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M.R. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotechnology and bioengineering, 102(1), 100-112.
    Ryu, H.J., Oh, K.K, & Kim, Y.S. (2009). Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. Journal of Industrial and Engineering Chemistry, 15(4), 471-475.
    Sandmann, G. (1985). Consequences of iron deficiency on photosynthetic and respiratory electron transport in blue-green algae. Photosynthesis Research, 6(3), 261-271.
    Schiff, J. A. (1962). Sulphur. In R. A. Lewin (Ed.), Physiolgy and biochemistry of algae (pp. 239-246). New York.
    Schulz, E., & Oslage, H.J. (1976). Composition and nutritive value of single-cell protein (SCP). Animal Feed Science and Technology, 1(1), 9-24.
    Shi, X. M., Chen, F., Yuan, J. P., & Chen, H. (1997). Heterotrophic production of lutein by selected Chlorella strains. Journal of Applied Phycology, 9(5), 445-450.
    Shields, Robin J, & Lupatsch, Ingrid. (2012). Algae for aquaculture and animal feeds. J Anim Sci, 21, 23-37.
    Shimeno, S., Masumoto, T., Hujita, T., MIMA, T., & Ueno, S. (1993). Alternative protein-sources for fish-meal in diets of young yellowtail. Nippon Suisan Gakkaishi, 59(1), 137-143.
    Sierra, E., Acién, F.G., Fernández, J.M., García, J.L., González, C., & Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138(1–3), 136-147.
    Singhal, G.S. (1999). Concepts in photobiology: photosynthesis and photomorphogenesis: Springer.
    Sobczuk, T.M., Camacho, F. G., Grima, E.M., & Chisti, Y. (2006). Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess and Biosystems Engineering, 28(4), 243-250.
    Sorokin, C., & Krauss, R. W. (1958). The Effects of Light Intensity on the Growth Rates of Green Algae. Plant Physiology, 33(2), 109-113.
    Sousa, I., Gouveia, L., Batista, A.P., Raymundo, A., & Bandarra, N.M. (2008). Microalgae in novel food products.
    Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96.
    Stengel, D.B., Connan, S., & Popper, Z.A. (2011). Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnology advances, 29(5), 483-501.
    Sunda, W.G., & Huntsman, S.A. (1995). Iron uptake and growth limitation in oceanic and coastal phytoplankton. Marine Chemistry, 50(1–4), 189-206.
    Suzuki, T., Matsuo, T., Ohtaguchi, K., & Koide, K. (1995). Gas‐Sparged bioreactors for CO2 fixation by Dunaliella tertiolecta. Journal of chemical technology and biotechnology, 62(4), 351-358.
    Sydney, E.B., Sturm, W., de Carvalho, J.C., Thomaz-Soccol, V., Larroche, C., Pandey, A., & Soccol, C.R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101(15), 5892-5896.
    Tacon, A.G.J. (1999). Overview of world aquaculture and aquafeed production. Book of Abstracts, World Aquaculture, 99, 26 April-2 May 1999, Sydney, Australia.
    Tacon, A.G.J. (2001). Aquaculture production trends analysis.
    Tacon, A.G.J., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158.
    Tam, N.F.Y., & Wong, Y.S. (1989). Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environmental Pollution, 58(1), 19-34.
    Tanaka, M., Norikane, A., & Watanabe, T. (2009). Cold cathode fluorescent lamps (CCFL): revolutionary light source for plant micropropagation. Biotechnology & Biotechnological Equipment, 23(4), 1497-1503.
    Tusé, D., & Miller, M.W. (1984). Single‐cell protein: current status and future prospects. Critical Reviews in Food Science & Nutrition, 19(4), 273-325.
    Ugwu, C.U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021-4028.
    van Iersel, S., & Flammini, A. (2010). Algae-based biofuels: applications and co-products: Food and Agriculture Organization of the United Nations.
    Vonshak, A., & Guy, R. (1988). Photoinhibition as a limiting factor in outdoor cultivation of Spirulina platensis. Algal biotechnology.
    Wang, S.K., Hu, Y.R., Wang, F., Stiles, A.R., & Liu, C.Z. (2014). Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology, 156(0), 117-122.
    Wang, Z., Li, G.Y., He, S., Teixeira da Silva, J.A., & Tanaka, M. (2011). Effect of cold cathode fluorescent lamps on growth of Gerbera jamesonii plantlets in vitro. Scientia Horticulturae, 130(2), 482-484.
    Xiong, W., Li, X.F., Xiang, J.Y., & Wu, Q.G. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied microbiology and biotechnology, 78(1), 29-36.
    Yeh, K.L., & Chang, J. S. (2011). Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP‐31: Implications for biofuels. Biotechnology journal, 6(11), 1358-1366.
    Zhang, K., Kurano, N., & Miyachi, S. (2002). Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess and Biosystems Engineering, 25(2), 97-101.
    Zou, N., & Richmond, A. (2000). Light-path length and population density in photoacclimation of Nannochloropsis sp.(Eustigmatophyceae). Journal of applied phycology, 12(3-5), 349-354.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE