簡易檢索 / 詳目顯示

研究生: 陳君豪
Chen, Chun-Hao
論文名稱: SOFC與小型氣渦輪機聯合系統之熱力學分析
Thermodynamic Analysis of Combined SOFC and Small Gas Turbine SysTem
指導教授: 洪振益
Hung, Chen-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 76
中文關鍵詞: 小型氣渦輪機燃料電池
外文關鍵詞: SOFC
相關次數: 點閱:147下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自古以來,能源一直都扮演著相當重要的角色,尤其是工業革命之後,能源的應用更是大幅的增加,以至於燃料的使用量也隨之大幅上升。能量的來源,從早期的燃燒木頭、煤炭,到現今的利用石油、天然氣、生質能、太陽能等,種類越來越多,但由於化石能源的燃料使用率低、污染性高,並且專家預估地球上化石燃料可能在未來幾十年內耗盡,而太陽能及生質能成本太高且效率不高或因發展困難等種種因素,於是“什麼是最合適的替代能源”成了能源界最熱們的課題。
    本文提出固態氧化物燃料電池SOFC(Solid Oxide Fuel Cell)/小型氣渦輪機(Small Gas Turbine)發電系統之效能分析(performance analysis),利用氣對氣熱交換器(gas to gas heat exchanger)將SOFC所排出之廢熱回收利用,用以加熱由空氣壓縮機出口之高壓空氣,使之達到氣渦輪機入口溫度,推動氣渦輪機葉片作功。本文利用系統中各個元件的能量分析,求出整個系統的熱效率(thermal efficiency),並將結果加以討論,以為系統最佳化之依據,進一步尋求能源最佳運用之系統設計,並期能達到高效率與節約能源的目的以及得到變數與系統效率間的關係。

    It is known that energy play the very important role of Today’s Life, especially the days after revolution of industry II, the amount of energy utilizing becomes very large. We can get energy by burning fossil fuel. But the utilizing efficiency of fossil fuel is very low and it makes up very heavy pollutions. Experts say that the resource of fossil fuel will be used up in several decades. Today, Biomass and Solar energy cost very high and the efficiency of them is not very high, or the technique of them is not very mature or easy. So they can’t be utilized generally. Today, finding ‘What is the best way to product energy’ becomes the most important task to overcome.
    This propose brings up the efficiency analysis of a hybrid system combined Solid Oxide Fuel Cell (SOFC) and Small Gas Turbine (GT), and using gas to gas heat exchanger to recycle the heat of the mixed gas, outlet from SOFC, to heat the pressured air, outlet from the air compressor. Then the heat can make the air to the needed temperature entering the gas turbine (turbine inlet temperature, TIT) to move the blade making power. The propose uses the energy analyses of every component of system to find the system overall thermal efficiency, then we find the results. Finally we use the conclusion to be the basis of system optimum and to find another better optimal system design. Then we wish to find the aim of high efficiency and saving energy and the relation of control parameters and system efficiency.

    中文摘要……………………………………………………………………I 英文摘要……………………………………………………………………II 誌謝……………………………………………………………………III 目錄……………………………………………………………………IV 表目錄……………………………………………………………………VI 圖目錄……………………………………………………………………VII 符號說明……………………………………………………………………IX 第一章 緒論……………………………………………………………1 1-1 研究動機與目的………………………………………………………1 1-2 文獻回顧………………………………………………………3 1-3 設計流程………………………………………………………10 1-4 本文架構………………………………………………………11 第二章 氫氣重整氣與燃料電池之簡介………………………………………………………12 2-1 燃料重整過程簡介………………………………………………………12 2-2燃料電池基本原理………………………………………………………16 2-3 燃料電池的種類………………………………………………………18 第三章 系統建構與理論分析….…………………………………………………………25 3-1 基本假設………………………………………………………25 3-2 SOFC/GT系統流程介紹………………………………………………26 3-3 系統各部分之分析………………………………………………28 第四章 結果與討論………………………………………………………38 4-1 SOFC效率分析………….………………………………………38 4-2 小型氣渦輪機系統之效率分析…………………………………42 4-3 SOFC+ small GT系統之效率分析………………………………45 4-4 總結…….………………………………………………………48 第五章 結論與未來展望……………………………………………………49 5-1 結論………………………………………49 5-2 未來展望…………………………………………………………50 參考文獻…………………………………………………………52 附錄………………………………………………………75 自述及著作權聲明…………………………………………………………76

    [1] Cengel, Y. A. and Boles, M. A., Thermodynamics: An engineering Approach, 2nd Edition, Mc Graw-hill, New York, pp.763, 1994.
    [2] Appleby, A. J. and Foulkes, F. R., Fuel Cell Handbook, Van Nostrand Reinhold, New York, 1989.
    [3] Haynes, C., “Clarifying reversible efficiency misconceptions of high temperature fuel cells in relation to reversible heat engines,” J. Power Sources, vol.92, pp.199-203, 2001.
    [4] Lutz, A.E., Larson, R. S., and Keller, J. O., “Thermodynamic comparison of fuel cell to the Carnot cycle,” Int. J. Hydrogen energy, vol.27, pp.1103-1111, 2002.
    [5] 李瑛, 王林山, 燃料電池, 冶金工業出版社, pp.6-7, 2000.
    [6] Argyropoulos, P., Scott, K., and Taama, W. M., “One-dimensional thermal model for direct methanol fuel cell stacks Part I. Model development,” J. Power Sources, vol.79, pp.169-183, 1999.
    [7] Argyropoulos, P., Scott, K., and Taama, W. M., “One-dimensional thermal model for direct methanol fuel cell stacks Part II. Model development,” J. Power Sources, vol.79, pp.184-198, 1999.
    [8] Standaert, F., Hemmes, K., and Woudstra, N., “Analytical fuel cell modeling,” J. Power Sources, vol.63, pp.221-234, 1996.
    [9] Cao, Y. and Guo, Z., ”Performance evaluation of an energy recovery system for fuel reforming of PEM fuel cell power plants,” J. Power Source, vol.109, pp.287-293, 2002.
    [10] 左峻德, 台灣燃料電池產業之發展策略, 台灣經濟研究月刊, 第24卷第11期, pp.55-67, 2001.
    [11] Jeong, K. S. and Oh, B. S., “Fuel economic and life-cycle of a fuel cell hybrid vehicle,“ J. Power Sources, vol.105, pp.58-65, 2002.
    [12] 白玉良, 迎接嶄新的氫利用社會, 台灣經濟研究月刊, vol.24, pp.83-96, 2001.
    [13] Ng, M. L., Lin, C. L., and Cheng, Y. T., “Operation of an on-site fuel cell power plant using natural gas with excess carbon dioxide,” J. Power Sources, vol.74, pp.159-168, 1998.
    [14] Yang, J. C., Park, Y. S., Seo, S. H., Lee, H. J., and Noh, J. S., “Development of a 50 kW PAFC power generation system,” J. Power Sources, vol.106, pp.68-75, 2002.
    [15] Ishizawa, M., Okada, S., and Yamashita, T., “Highly efficient heat recovery system for phosphoric acid fuel cell used for cooling telecommunication equipment,” J. Power Sources, vol.86, pp.294-297, 2000.
    [16] Massardo, A. F. and Bosio, B., ”Assessment of Molten Carbonate Fuel Cell Models and Integration With Gas and Steam Cycles,” ASME J. Engineering for Gas Turbine and Power, vol.123, pp.103-109, 2002.
    [17] Braun, R. J., Gaggioli, R. A., and Dunbar, W. R., “Improvement of a Molten Carbonate Fuel Cell Power Plant via Exergy Analysis,” ASME J. Energy Resources Technology , vol.121, pp.277-285, 1999.
    [18] Tsiakaras, P. and Demin, A., “Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol,” J. Power Source, vol.102, pp.210-217, 2001.
    [19] Douvartzides, S. L., Coutelieris, F.A. and Tsiakaras, P.E., “On the systematic optimization of ethanol gas SOFC-based electricity generating systems in terms of energy and exergy,” J. Power Source, vol.114, pp.203-212, 2003.
    [20] Aguiar, P., Chadwick, D., and Kershenbaum, L., “Modelling of an indirect internal reforming solid oxide fuel cell,” Chemical Engineering Science, vol.57, pp.1665-1677, 2002.
    [21] Palsson , J., Selimovic, A., and Sjunnesson, L., “Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation,“ J. Power Sources, vol.86, pp.442-448, 2000.
    [22] Chan, S.H., Ho, H. K., and Tian, Y., “Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant,” J. Power Source, vol.109, pp.111-120, 2002.
    [23] MARTYN V.TWIGG, CATALYST HANDBOOK 2nd, WOLFE Publishing, London, 1989.
    [24] Kotas, T.J., The Exergy Method of Thermal Plant Analysis, Krieger Publishing Company, USA, 1995.
    [25] Edward E. Anderson, Thermodynamics, PWS Publishing Company, Boston, p.678, 1994.
    [26] Yunus A. C., and Michael A. B., Thermodynamics: An Engineering Approach, McGRAW-HILL, New York, pp.772-776, 1989.
    [27] Leo, J.M.J.B, and Michael, N.M., Fuel Cell System, Plenum publishing Corporation, New York, pp218-219, 1993.

    下載圖示 校內:2006-07-09公開
    校外:2008-07-09公開
    QR CODE