| 研究生: |
黃鈴真 Huang, Ling-Chen |
|---|---|
| 論文名稱: |
薄工件五軸虛擬加工其彈性變形之體積誤差分析與補償 Volumetric Errors Analysis and Compensation of Elastic Deformation of Thin Workpiece in Five-Axis Virtual Machining |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 五軸加工 、薄工件 、彈性變形 、誤差補償 |
| 外文關鍵詞: | Five-axis machining, thin workpiece, elastic deformation, error compensation |
| 相關次數: | 點閱:147 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多軸工具機被應用於許多高精度之產品加工,如醫療器材、航太零件等,其中許多的加工產品為結構剛性較低的薄工件。以往針對薄工件之多軸加工大多以避免因加工造成其彈性變形為原則,於製程設計階段進行重複加工測試與量測求得最佳之進給量。若能建立一套薄工件加工之誤差分析與補償流程,即可省去繁複的加工規劃過程,提升薄工件之製程效率。
本研究首先以切削力模擬程式計算薄工件於加工過程中所受到之切削力,接著利用有限元素軟體做靜態分析得到變形量,透過MATLAB擬合計算出誤差矩陣,並藉由誤差矩陣修正薄工件之加工路徑,最後透過形狀創成函數將修正之加工路徑做後處理得到補償後之NC碼;系統評估方面,本文將修正後之刀具路徑藉由VERICUT®做切削模擬,並利用有限元素軟體對虛擬加工後之薄工件做卸載分析以得到加工後之體積誤差,使用者可透過系統評估介面得知加工後工件精度是否符合需求,並將評估結果作為加工道次規劃之依據。
本論文發展出一套系統流程,分析出薄工件之加工體積誤差並予以補償,此系統可應用於多軸加工的製程設計階段,讓使用者針對薄工件之製程做規劃,不僅大幅提升整體製造流程之效率,對工件之精度皆可明顯改善。
Multi-axis machine tools are used for machining of complex workpieces with high precision, such as medical and aerospace parts, some of which are thin workpieces with low structural rigidity. On account of avoiding elastic deformation of thin workpieces caused by multi-axis machining, most engineers in the past must repeat test and measurement in the process planning stage for the optimal material removal within precision requirement. If an analysis and compensation system for volumetric errors of thin workpieces can be established, it will provide for users with complex process planning to improve the efficiency of processing for thin workpieces.
In this research, a cutting force simulation program is used for calculating the cutting force during machining process of thin workpieces, and then finite element software is applied for analyzing the deformation of thin workpieces under static condition. Taking MATLAB for formula fitting, the error matrix can be calculated, and then the cutting path can be modified. Finally through the form shaping function, the NC code with compensation can be generated by postprocessing. In order to evaluate the compensated results, the modified cutting paths are simulated by Vericut software, and the unloading process of thin workpieces after virtual processing is simulated by the finite element software, thus, the volumetric errors with modified cutting path can be generated. Through the evaluation system, the users can obtain the result to check if the precision of the workpiece meet the requirements or not, and regard the evaluation result as the basis for process planning.
In this thesis, a system has been constructed for analyzing the volumetric errors of thin workpieces and compensate it. It can be applied for the process planning of multi-axis machining with thin workpiece. The system makes great improvements not only on the efficiency of the overall manufacturing process but also on the precision of the product.
Anderson, P.A., "Methodology for evaluating the production accuracy of the machine tools", Ph.D. Dissertation, Tampere University of Technology, Tampere, Finland, 1992.
Budak, E., Altintas, Y., & Armarego, E. J. A., "Prediction of Milling Force Coefficients From Orthogonal Cutting Data", Journal of Manufacturing Science and Engineering, vol. 118(2), pp. 216-224, 1996.
Engin, S., & Altintas, Y., "Mechanics and dynamics of general milling cutters", International Journal of Machine Tools and Manufacture, vol. 41, pp. 2195-2212, 2001.
He, N., Wang Z., Jiang, C., & Zhang, B., "Finite element method analysis and control stratagem for machining deformation of thin-walled components", International Journal of Materials Processing Technology, vol. 139, pp. 332-336, 2003.
Kazemi, M., Jabbari, P.B., Sadeghi, M.H., & Imani, B.M., "Surface Integrity of Thin-Walled Titanium Parts Machined by Peripheral Milling", 4th International Conference and Exhibition on Design and Production of MACHINES and DIES/MOLDS, Cesme, TURKEY, 2007.
Khan, A.W., & Chen,W.Y., "A methodology for systematic geometric error compensation in five-axis machine tools", International Journal of Advanced Manufacturing Technology, vol. 53, pp. 615-628, 2011.
Liu, G., "Study on deformation of titanium thin-walled part in milling process", International Journal of Materials Processing Technology, vol. 209, pp. 1788-2793, 2009.
Rahman, M., Heikkala, J., & Lappalainen, K., "Modeling, measurement and error compensation of multi-axis machine tools. Part I: theory", International Journal of Machine Tools & Manufacture, vol.40, pp. 1535– 1546, 2000.
Ramesh, R., & Mannan, M.A., Poo, A.N., "Error compensation in machine tools-a review Part I: geometric, cutting-force induced and fixture-dependent errors", International Journal of Machine Tools & Manufacture, vol. 40, pp. 1235-1256, 2000.
Ratchev, S., Liu, S., Huang, W., & Becker, A.A., "A flexible force model for end milling of low-rigidity parts", International Journal of Materials Processing Technology, vol. 153-154, pp. 134-138, 2004.
Ratchev, S., Liu, S., Huang, W., & Becker, A.A., "Modelling and simulation environment for machining of low-rigidity components", International Journal of Materials Processing Technology, vol. 153-154, pp. 67-73, 2004.
Ratchev, S., Liu, S., Huang, W., & Becker, A.A., "Milling error prediction and compensation in machining of low-rigidity parts", International Journal of Machine Tools and Manufacture, vol. 44, pp. 1629-1641, 2004.
Ratchev, S., Liu, S., & Becker, A.A., "Error compensation strategy in milling flexible thin-wall parts", International Journal of Materials Processing Technology, vol. 162-163, pp. 673-681, 2005.
Ratchev, S., Liu, S., Huang, W., & Becker, A.A., "An advanced FEA based force induced error compensation strategy in milling", International Journal of Machine Tools and Manufacture, vol. 46, pp. 542-551, 2006.
Saeed, M., "Finite Element Analysis-Theory and Application with ANSYS", Prentice-Hall, Upper Saddle River, New Jersey, 1999.
Tsai, J.S., & Liao, C.L., "Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces", International Journal of Materials Processing Technology, vol. 94, pp. 235-246, 1999.
Tang, A., & Liu, Z., "Deformations of thin-walled plate due to static end milling force", Journal of materials processing technology, vol. 206, pp. 345-351, 2008.
The MathWorks, Inc., "Curve Fitting Toolbox User’s Guide", MathWorks, 2012.
Wan, M., Zhang, W.H., Qin, G.H., & Wang, Z.P., "Strategies for error prediction and error control in peripheral milling of thin-walled workpiece", International Journal of Machine Tools & Manufacture, vol. 48, pp. 1366-1374, 2008.
佘振華,"空間凸輪五軸加工數值控制程式設計系統之研究",博士論文, 國立成功大學機械工程研究所,1997.
李輝煌,"ANSYS工程分析-基礎與觀念",台北:高立,2009.
吳昌樺,"應用切削幾何於五軸虛擬加工銑削力之評估",碩士論文,國 立成功大學機械工程研究所,2011.
林彥宏,"五軸虛擬工具機模擬系統一般化建構之研究",碩士論文,國 立成功大學機械工程研究所,2004.
林彥宏,"五軸虛擬工具機組裝誤差之分析與補償系統發展",博士論文, 國立成功大學機械工程研究所,2010.
官明陽,"橈骨骨板的幾何設計和多軸加工",碩士論文,正修科技大學 機電工程研究所,2012.
陳福成,"綜合加工機機構之構形合成",碩士論文,國立成功大學機械 工程研究所,1997.
陳冠安,"以形狀創成函數探討五軸工具機組裝誤差對體積誤差之效應", 碩士論文,國立成功大學機械工程研究所,2010.
葉家秀,"靜態負載下五軸虛擬工具機之體積誤差分析",碩士論文,國 立成功大學機械工程研究所,2011.
楊承融,"應用遺傳演算法於五軸虛擬工具機體積誤差分配",碩士論文, 國立成功大學機械工程研究所,2011.
謝恩平,"應用八元樹法於銑削力預估之五軸虛擬工具機系統",碩士論 文,國立成功大學機械工程研究所,2013.