簡易檢索 / 詳目顯示

研究生: 温婉伶
Wen, Wan-Ling
論文名稱: 探討CC2D1A在內側前額葉皮質神經功能中所扮演的角色
Role of CC2D1A in neuronal function of the medial prefrontal cortex
指導教授: 許桂森
Hsu, Kuei-Sen
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 83
中文關鍵詞: CC2D1A內側前額葉皮質認知功能憂鬱症
外文關鍵詞: CC2D1A, medial prefrontal cortex, recognition, depression
相關次數: 點閱:96下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Coiled-coil and C2 domain containing 1A (CC2D1A) 是一種會廣泛表現於人體各種組織中的蛋白質,最初是在研究NF-κB (nuclear factor-κB) 訊息傳遞路徑時被發現的,其被證明可以作為NF-κB訊息傳遞路徑中的活化劑。此後,CC2D1A也被證實其可作為信號蛋白的角色,參與在cAMP (cycle adenosine monophosphate)–PKA (cAMP-dependent protein kinase) 和PDK1 (phosphoinositide-dependent protein kinase-1)/Akt (protein kinase B) 的訊息傳遞路徑中。其亦可作為第二型多巴胺受體D2R與第1A型血清素受體5-HT1A R的轉錄抑制因子。在近年的臨床研究中發現,憂鬱症患者於前額葉皮質 (prefrontal cortex) 區域中的CC2D1A有失調的情形,而在非症候群型智能障礙 (non-syndromic intellectual disability, NSID) 的患者身上也看到Cc2d1a基因產生變異,顯示CC2D1A的失調在憂鬱症以及智能障礙的疾病中可能扮演著重要的角色,然而對於作用的生物機制仍然不清楚。前額葉皮質為大腦中主要負責認知、執行、決策、空間工作記憶 (spatial working memory) 以及情緒的管理等功能。在前額葉皮質區受傷的病患中觀察到,會產生類似阿茲海默症 (Alzheimer’s disease) 與思覺失調症 (schizophrenia) 等認知功能的缺陷。另外,憂鬱症患者的腹側前額葉皮質 (ventromedial prefrontal cortex) 中也有異常活化的情形被發現。因此,在本研究中我們利用條件性剔除Cc2d1a小鼠以探討CC2D1A在內側前額葉皮質的神經元中所扮演的角色。在我們的研究中發現,CC2D1A蛋白質在內側前額葉皮質中於胚胎時期及以出生後第十四天起,為其表現量較高的時期,並且會廣泛的表現在不同種類的神經元中。在利用Cre-loxP基因工程系統,條件性剔除掉興奮性神經元的Cc2d1a基因後,發現條件性剔除Cc2d1a小鼠相較於野生型小鼠,在認知功能的表現上明顯變差,但在類憂鬱的相關行為測試中則沒有差異。而專一性的剔除內側前額葉皮質中興奮性神經元Cc2d1a小鼠在空間工作記憶與新奇事物辨識試驗 (novel object recognition test) 中的表現上也較差。在全細胞電氣生理學紀錄的結果中觀察到,條件性剔除Cc2d1a小鼠在內側前額皮質神經元上的NMDA受體的組成提高,同時,在西方點墨法中也看到GluN2A有顯著的增加,而在mRNA的表現量上則看到5-HT1A R、ANKK1、BDNF exon1及exon9有顯著的下降。在神經元的型態上我們發現,條件性剔除Cc2d1a小鼠在內側前額葉皮質中的尖端樹突分支程度有減少現象,而興奮性與抑制性的神經突觸則都有增加的情形。此外,我們檢測了被認為會影響認知功能表現的三條訊息傳遞路徑,包括cAMP-PKA、PDK1/Akt以及NF-κB,而從實驗結果中看到,條件性剔除Cc2d1a小鼠的內側前額葉皮質在這三條路徑的表現上,與野生型小鼠相比並沒有明顯差異。綜合以上實驗結果,我們推測條件性剔除Cc2d1a小鼠在認知功能試驗中的表現變差,可能是由於BDNF的表現量下降,影響了神經元的型態及功能所導致。本研究更加確定CC2D1A在認知功能上所扮演的重要角色。

    CC2D1A is originally identified as a nuclear factor-κB activator of human gene. It is highly expressed in human tissues, including the brain, stomach, small intestine, nasopharynx, gallbladder and testis. Recent genetic and biochemical evidence strongly suggests that CC2D1A functions as a transcriptional repressor of neuronal 5-HT1A receptor and D2 receptor genes. Additionally, CC2D1A can also function as a signaling protein in cAMP-PKA, PDK1/Akt signaling pathways. Human studies have shown that CC2D1A dysregulation may contribute to the development of major depression and non-syndromic intellectual disability. However, the precise mechanisms by which CC2D1A regulates intellectual and psychological functions remain elusive. Medial prefrontal cortex has been considered as the integration part of brain, which regulates cognitive function, executive function, spatial working memory, as well as emotional management. The clinical research have found that those patient whose prefrontal cortex were injured showed recognition impaired, which is similar to Alzheimer’s disease and schizophrenia. Also, other clinical research showed hyperactivity of ventromedial prefrontal cortex in patient with depression. Here, we examine the role of CC2D1A in neuronal function of the mPFC. We found that CC2D1A is widely expressed in different neuronal cells in mPFC, and its protein expression in mouse mPFC tissue lysates was relatively high during the embryonic stage, and remained constant in adulthood. Genetic deletion of Cc2d1a (Cc2d1a-/-) from excitatory neurons leads to impaired performance in recognition task, and the complexity of apical dendrite is decreased. In addition, Cc2d1a-/- mice showed an increase in the NMDA/AMPA ratio. Furthermore, significant increases of NMDA receptor subunit GluN2A protein, as well as NLGN1 and NLGN2 protein expression and decreases 5-HT1A receptor expression were observed in the mPFC from CC2D1A-/- mice compared to those from wild-type mice. Also, notable decreases of 5-HT1AR, ANKK1, BDNF exon1 and exon9 mRNA levels were observed in the mPFC from Cc2d1a-/- mice compared to wild-type mice. According to our study, we proposed that decreased BDNF affect dendritic morphology, which lead to cognitive function impaired in Cc2d1a-/- mice. Our findings demonstrate a novel role for CC2D1A in regulating mPFC-dependent cognitive functions.

    中文摘要 I 英文延伸摘要 IV 誌謝 VIII 縮寫檢索表 (Abbreviations) XI 緒論 (Introduction) 2 1-1. CC2D1A 2 1-2. CC2D1A相關疾病與作用機制 3 1-3. 內側前額葉皮質 (medial prefrontal cortex) 9 1-4. 研究目的 11 材料與方法 (Materials and Methods) 14 2-1. 實驗動物 (Animals) 14 2-2. 基因定型分析 (Genotyping) 14 2-3. 西方點墨法 (Western blots) 17 2-4. 免疫組織染色法 (Immunohistochemistry) 24 2-5. 高基染色法 (Golgi staining) 26 2-6. 內側前額葉皮質腦切片製備 28 2-7. 生物素胺酸標記 (biocytin staining) 31 2-8. 影像分析 32 2-9. 動物行為實驗 32 2-10. 立體定位病毒注射法 (Stereotaxic viral injection) 36 2-11. 統計方法 37 實驗結果 (Results) 40 3-1. CC2D1A在小鼠內側前額葉皮質從胚胎到成鼠時期的蛋白質表現以及分布情形 40 3-2. 內側前額葉皮質中條件性剔除小鼠興奮性神經元中Cc2d1a的表現情形 41 3-3. 條件性剔除Cc2d1a小鼠內側前額葉皮質的錐體神經元尖端樹突分支程度 (arborization) 減少 43 3-4. 條件性剔除Cc2d1a小鼠在認知功能表現上較差 44 3-5. 專一性剔除內側前額葉皮質興奮性神經元Cc2d1a小鼠認知功能表現較差 46 3-6. 條件性剔除Cc2d1a小鼠不會影響內側前額葉皮質中誘發長期增益現象之情形 47 3-7. 條件性剔除Cc2d1a小鼠會提升突觸後NMDA受體的組成 48 3-8. 條件性剔除Cc2d1a小鼠於內側前額葉皮質中5-HT1AR表現量減少而GluN2A受體表現量增加 50 3-9. 條件性剔除Cc2d1a小鼠於內側前額葉皮質中的cAMP-PKA、NF-κB及PDK1/Akt等訊息傳遞路徑並沒有改變 52 3-10. 條件性剔除Cc2d1a小鼠興奮性與抑制性神經突觸表現增加 53 討論 (Discussion) 56 圖表 64 參考文獻 (References) 79

    Al-Tawashi A, Jung SY, Liu D, Su B, Qin J (2012) Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity.
    Journal of Biological Chemistry 287: 14644-14658.
    Basel-Vanagaite L, Attia R, Yahav M, Ferland RJ, Anteki L, Walsh CA, Olender T, Straussberg R, Magal N, Taub E, Drasinover V, Alkelai A, Bercovich D, Rechavi G, Simon AJ, Shohat M (2006) The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal
    recessive non-syndromic mental retardation. Journal of Medical Genetics 43: 203-210.
    Bizon JL, Foster TC, Alexander GE, Glisky EL (2012) Characterizing cognitive aging of working memory and executive function in animal models. Frontiers in Aging Neuroscience 4: 19.
    Blum K, Braverman ER, Cull JG, Eisenberg A, Sherman M, Schnautz N, Fischer L, Mathews D, Comings DE (1997) Association of polymorphisms of dopamine D2 receptor (DRD2) and dopamine transporter (DAT1) genes with schizoid/avoidant behaviors (SAB) and pathological violence (PV). Molecular Psychiatry 2: 239–246.
    Branchi I, Bichler Z, Berger-Sweeney J, Ricceri L (2003) Animal models of mental retardation: from gene to cognitive function. Neuroscience & Biobehavioral Reviews 27: 141-153.
    Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD (2012) The mouse forced swim test. Journal of visualized experiments 59: e3638.
    Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Bhat S, Gould TD (2012) The Tail Suspension Test. Journal of visualized experiments 59: e3769.
    Constantine-Paton M, Cline HT (1998) LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become. Current Opinion in Neurobiology 8: 139-148.
    Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129: 1659-1673.
    De Bruin JPC, Feenstra MGP, Broersen LM, Van Leeuwen M, Arens C, De Vries S, Joosten RNJMA (2000) Role of the prefrontal cortex of the rat in learning and decision making: effects of transient inactivation. Progress in
    Brain Research 126: 103-113.
    Duman RS (2002) Synaptic plasticity and mood disorders. Molecular Psychiatry 7: 29-34.
    Duman RS (2009) Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression. Dialogues in Clinical Neuroscience 11: 239-255.
    Groenewegen HJ, Uylings HBM (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Progress in Brain Research 126: 3-28.
    Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416: 396-400.
    Hayden MS, Ghosh S (2008) Shared Principles in NF-κB Signaling. Cell 132: 344-362.
    Heckers S, Rauch S, Goff D, Savage C, Schacter D, Fischman A, Alpert N (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nature Neuroscience 1: 318-323.
    Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and
    anatomical characteristics. Neuroscience & Biobehavioral Reviews 27: 555-579.
    Herold S, Jagasia R, Merz K, Wassmer K, Lie DC (2011) CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Molecular and
    Cellular Neuroscience 46: 79-88.
    Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. Journal of Neuroscience 27: 11496-11500.
    Hsiung Sc, Adlersberg M, Arango V, Mann JJ, Tamir H, Liu K. (2003) Attenuated 5-HT1A receptor signaling in brains of suicide victims: involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. Journal of Neurochemistry 87: 182-194.
    Huang YF, Yang CH, Huang CC, Hsu KS (2012) Vascular endothelial growth factor-dependent spinogenesis underlies antidepressant-like effects of enriched environment. Journal of Biological Chemistry 287: 40938-40955.
    Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, Moore H, Kandel ER (2006) Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49: 603-615.
    López-Figueroa AL, Norton CS, López-Figueroa MO, Armellini-Dodel D, BurkeS, Akil H, López JF, Watson SJ (2004) Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biological Psychiatry 55: 225-233.
    Liang J, Xu W, Hsu YT, Yee AX, Chen L, Sudhof TC (2015) Conditional knockout of Nlgn2 in the adult medial prefrontal cortex (mPFC) induces delayed loss of inhibitory synapses. Molecular Psychiatry 20: 793.
    Lisman JE, Fellous JM, Wang XJ (1998) A role for NMDA-receptor channels in working memory. Nature Neuroscience 1: 273-275.
    Lu RB, Lee JF, Huang SY, Lee SY, Chang YH, Kuo PH, Chen SL, Chen SH, Chu CH, Lin WW, Wu PL, Ko HC (2012) Interaction between ALDH2*1*1 and DRD2/ANKK1 TaqI A1A1 genes may be associated with antisocial personality disorder not co-morbid with alcoholism. Addiction Biology 17: 865-874.
    Lucht M, Rosskopf D (2008) Comment on " Genetically Determined Differences in Learning from Errors ". Science 321: 200.
    Manzini M C, Xiong L, Shaheen R, Tambunan DE, Di Costanzo S, Mitisalis V, Tischfield DJ, Cinquino A, Ghaziuddin M, Christian M, Jiang Q, Laurent S, Nanjiani ZA, Rasheed S, Hill RS, Lizarraga SB, Gleason D, Sabbagh D, Salih MA, Alkuraya FS, Walsh CA (2014) CC2D1A regulates human
    intellectual and social function as well as NF-κB signaling homeostasis, Cell Reports 8: 647-655.
    Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, Nagano Y, Doi T, Shimotohno K, Harada T, Nishida E, Hayashi H, Sugano S (2003) Large-scale identification and characterization of human genes that activate NF-κB and MAPK signaling pathways. Oncogene 22: 3307-3318.
    Millar AM, Souslova T, Albert PR (2012) The Freud-1/CC2D1A Family: Multifunctional Regulators Implicated in Mental Retardation. Prof. Uner Tan (Ed.) Latest Findings in Intellectual and Developmental Disabilities
    Research (pp. 279-302)
    Nakamura A, Naito M, Tsuruo T, Fujita N (2008) Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Molecular and Cellular
    Biology 28: 5996-6009.
    Nejad A, Fossati P, Lemogne C (2013) Self-Referential Processing, Rumination, and Cortical Midline Structures in Major Depression. Frontiers in Human Neuroscience 7: 666.
    Oaks AW, Zamarbide M, Tambunan DE, Santini E, Di Costanzo S, Pond HL, Manzini MC (2017) Cc2d1a Loss of Function Disrupts Functional and Morphological Development in Forebrain Neurons Leading to Cognitive and Social Deficits. Cerebral Cortex 27: 1670-1685.
    Ou XM, Lemonde S, Jafar-Nejad H, Bown CD, Goto A, Rogaeva A, Albert PR (2003) Freud-1: A Neuronal Calcium-Regulated Repressor of the 5-HT1A Receptor Gene. Neuroscience 23: 7415-7425.
    Parent M A, Wang L, Su J, Netoff T, Yuan LL (2010) Identification of the hippocampal input to medial prefrontal cortex in vitro. Cerebral Cortex 20:
    393-403.
    Parente D J, Garriga C, Baskin B, Douglas G, Cho MT, Araujo GC, Shinawi M (2017) Neuroligin 2 nonsense variant associated with anxiety, autism, intellectual disability, hyperphagia, and obesity. American Journal of Medical Genetics 173: 213-216.
    Ponce G, Hoenicka J, Jimenez-Arriero MA, Rodriguez-Jimenez R, Aragues M, Martin-Sune N, Huertas E, Palomo T (2008) DRD2 and ANKK1 genotype in alcohol-dependent patients with psychopathic traits: association and
    interaction study. British Journal of Psychiatry 193: 121-125.
    Manzini MC, Xiong L, Shaheen R, Tambunan DE, Di Costanzo S, Mitisalis V, Tischfield DJ, Cinquino A, Ghaziuddin M, Christian M, Jiang Q, Laurent S, Nanjiani ZA, Rasheed S, Sean Hill R, Lizarraga SB, Gleason D, Sabbagh D, Salih MA, Alkuraya FS, Walsh CA (2014) CC2D1A regulates
    human intellectual and social function as well as NF-κB signaling homeostasis. Cell Reports 8: 647-655.
    Morris RG (1989) Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. Journal of Neuroscience 9:3040-3057.
    Rogaeva A, Galaraga K, Albert PR (2007) The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. Journal of Neuroscience Research 85: 2833-2838.
    Savitz J, Drevets WC (2009) Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neuroscience & Biobehavioral Reviews 33: 699-771.
    Schechter LE, Smith DL, Rosenzweig-Lipson S, Sukoff SJ, Dawson LA, Marquis K, Jones D, Piesla M, Andree T, Nawoschik S, Harder JA, Womack MD, Buccafusco J, Terry AV, Hoebel B, Rada P, Kelly M, Abou-Gharbia M, Barrett JE, Childers W (2005) Lecozotan (SRA-333): a selective serotonin 1A receptor antagonist that enhances the stimulated release of glutamate and acetylcholine in the hippocampus and possesses cognitive-enhancing properties. Journal of Pharmacology and Experimental Therapeutics 314: 1274-1289.
    Sen R, Baltimore D (1986) Multiple Nuclear Factors Interact with the Immunoglobulin Enhancer Sequences. Cell 46: 705-716.
    Sola C, Tusell JM, & Serratosa J (1999) Comparative Study of the Distribution of Calmodulin Kinase II and Calcineurin in the Mouse Brain. Journal of Nursing Research 57: 651-662.
    Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455: 903-911.
    Szewczyk B, Albert PR, Rogaeva A, Fitzgibbon H, May WL, Rajkowska G, Miguel-Hidalgo JJ, Stockmeier CA, Woolverton W L, Kyle PB, Wang Z, Austin MC (2010) Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex
    of subjects with major depression. International Journal of Neuropsychopharmacology 13: 1089-1101.
    Van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Current Neurology and Neuroscience Reports 10: 207-214.
    Verma A, Moghaddam B (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. Journal of Neuroscience 16: 373-379.
    Vigers AJ, Amin DS, Talley-Farnham T, Gorski JA, Xu B, Jones KR (2012) Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior. Neuroscience 212:
    1-18.
    Wang X, Zhang C, Szabo G, Sun QQ (2013) Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Research 1518: 9-25.
    Zhao M, Li XD, Chen Z (2010) CC2D1A, a DM14 and C2 domain protein, activates NF-κB through the canonical pathway. Journal of Biological Chemistry 285: 24372-24380.
    Zhao M, Raingo J, Chen ZJ, Kavalali ET (2011) Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, WTs functional maturation of central synapses. Journal of Neurophysiology 105:1506-1515.

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE