簡易檢索 / 詳目顯示

研究生: 溫俊誠
Wen, Chiun-Cheng
論文名稱: 應用於虛擬研發之以本體論為基分散式案例推理研究
Ontology-Based Distributed Case-Based Reasoning in Virtual R&D
指導教授: 陳裕民
Chen, Yuh-Min
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 製造工程研究所
Institute of Manufacturing Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 102
中文關鍵詞: 案例推理本體論知識檢索虛擬研發
外文關鍵詞: ontology, case-based reasoning, knowledge retrieval, virtual R&D
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著知識經濟時代的來臨與跨企業虛擬研發的興起,企業的知識來源已不再侷限於企業本身。為支援虛擬研發的運作,分散式案例推理勢必扮演重要的角色。然而目前關於分散式案例推理的研究,多針對同一系統內之分散式案例,且均依預設之領域知識標準來實現知識分享,而系統間的知識分享卻未被重視。此外,傳統的案例式推理系統,多僅提供使用者近似的案例,無法依使用者之需求進行調適。

    本研究目的在設計一應用於虛擬研發之以本體論為基分散式案例推理架構,並應用本體論工程技術來解決分散式案例異質與案例調適的問題,再利用本體論特性與多階段之演算法發展一本體論為基之分散式案例推理機制,使能依使用者之敘述,從分散式案例儲存庫中檢索出最相近的案例,再經由領域本體論概念間的關聯與限制,導出案例調適的法則,再對案例進行調適,以協助使用者獲得適當之案例,俾利於虛擬研發之知識分享。

    With the advent of knowledge economy and virtual R&D models, enterprises get the knowledge not only from themselves but also from others. Distributed case-based reasoning system (DCBRS) plays an important role in virtual R&D by supporting knowledge sharing.

    This study develops a novel mechanism for ontology-based distributed case-based reasoning using ontology and a proposed multistage algorithm to effectively support knowledge sharing within a virtual R&D environment. Tasks involved in this study are as follows: (i) design an ontology-based distributed case-based reasoning architecture and procedure, (ii) develop techniques related to the ontology-based distributed case-based reasoning, and (iii) implement an ontology-based distributed case-based reasoning mechanism. Developing methods associated with ontology-based distributed case-based reasoning involves the definition and representation of a user query model, definition and representation of a knowledge case model, definition and establishment of a knowledge case index structure, and development of a distributed knowledge case retrieval and knowledge case adaptation methods. Study results will facilitate heterogeneous knowledge sharing among enterprises participating in a virtual R&D.

    內 文 目 錄 第一章 緒 論………………………1 1.1 研究背景…………………………1 1.2 研究動機與目的…………………2 1.3 研究項目與方法…………………3 1.4 研究假設與限制…………………4 1.5 全文大綱…………………………4 第二章 文獻探討……………………6 2.1 虛擬組織與虛擬研發……………6 2.1.1 虛擬組織的生命週期…………7 2.1.2 虛擬研發團隊的類型…………7 2.1.3 虛擬研發的優缺點……………11 2.2 知識管理…………………………12 2.3 案例推理…………………………14 2.3.1 案例調適………………………18 2.4 本體論……………………………22 2.4.1 本體論建構……………………23 2.4.2 本體論查詢……………………24 2.5 近似研究…………………………25 第三章 案例推理架構與程序………27 3.1 虛擬研發與案例…………………27 3.2 案例推理架構……………………34 3.3 案例推理程序……………………36 第四章 案例模式、索引結構與查詢模式…40 4.1 案例模式…………………………40 4.2 案例索引結構……………………42 4.2.1 領域本體論……………………43 4.2.2 案例索引結構:定義與表達…45 4.2.3 案例索引建立程序……………46 4.3 案例查詢模式……………………48 第五章 案例檢索與調適……………52 5.1 案例檢索…………………………52 5.1.1 定量資料………………………54 5.1.2 定性資料………………………60 5.1.3 分群……………………………63 5.1.4 相似度排序……………………77 5.2 案例調適…………………………78 第六章 演算法與實作………………84 6.1 演算法設計………………………84 6.2 機制實作…………………………87 第七章 結論與建議…………………93 7.1 結論………………………………93 7.2 未來研究方向建議………………93 參考文獻………………………………95 圖 目 錄 圖2.1 虛擬組織的生命週期………………………………………7 圖2.2 四種虛擬研發團隊模型……………………………………8 圖2.3 自我協調型虛擬研發團隊…………………………………8 圖2.4 系統整合者協調型虛擬研發團隊…………………………9 圖2.5 核心小組型虛擬研發團隊…………………………………10 圖2.6 集中式風險團隊型…………………………………………11 圖2.7 案例推理循環………………………………………………15 圖2.8 案例調適……………………………………………………18 圖2.9 案例調適技術分類…………………………………………19 圖2.10 轉換式調適………………………………………………20 圖2.11 創生式調適………………………………………………21 圖3.1 國內中心廠之設計通知單…………………………………29 圖3.2 國內協力廠之設計通知單…………………………………31 圖3.3 國外母廠之設計通知單……………………………………33 圖3.4 應用於虛擬研發之以本體論為基分散式案例推理架構…35 圖3.5 應用於虛擬研發之以本體論為基分散式案例推理程序…37 圖4.1 案例模式……………………………………………………41 圖4.2 案例模式(OWL)……………………………………………42 圖4.3 本體論表達模式……………………………………………43 圖4.4 活塞引擎領域本體論………………………………………44 圖4.5 案例索引結構………………………………………………45 圖4.6 定義與建立案例索引程序…………………………………46 圖4.7 案例索引結構實例…………………………………………47 圖4.8 RDF的基本結構……………………………………………49 圖4.9 結構化使用者需求查詢表達模式…………………………49 圖4.10 案例查詢模式實例………………………………………50 圖4.11 案例查詢模式實例(OWL)…………………………………51 圖5.1 案例檢索程序與方法………………………………………53 圖5.2 模糊自適應共振理論網路架構圖…………………………63 圖5.3 案例調適架構………………………………………………81 圖6.1 演算法架構…………………………………………………84 圖6.2 使用者需求敘述……………………………………………88 圖6.3 搜尋結果與排序……………………………………………88 圖6.4 調適結果與排序……………………………………………89 圖6.5 案例內容(摘要)……………………………………………90 圖6.6 案例內容(工程圖)…………………………………………90 圖6.7 案例內容(組合圖)…………………………………………91 圖6.8 使用者滿意度問卷…………………………………………92 表 目 錄 表5.1 10組案例特徵資訊………………………54 表5.2 案例中的定量資料(最大馬力)…………55 表5.3 排序後的定量資料………………………55 表5.4 鄰近資料的差值…………………………55 表5.5 鄰近資料之相似度值……………………56 表5.6 量化資料分群結果………………………57 表5.7 定量資料之歸屬函數值…………………60 表5.8 案例中的定性資料………………………61 表5.9 經數值轉換後的定性資料………………61 表5.10 經正規化後的定性資料…………………62 表5.11 特徵向量…………………………………63 表5.12 案例分群結果……………………………74 表5.13 查詢案例之特徵資訊……………………74 表5.14 查詢案例與特徵向量……………………75 表5.15 查詢案例分群結果………………………76 表5.16 與查詢案例間之距離……………………78 表5.17 OWL Class Constructors………………79 表5.18 OWL Axioms………………………………80 表5.19 法則層與本體論層關係…………………82 表5.20 本體論關係限制與調適法則……………82

    1. Anumba, C. J., Baugh, C., and Khalfan, M. M. A., (2002). Organisational
    structures to support concurrent engineering in construction. Industrial
    Management & Data Systems, 102:5, 260- 270.
    2. Asuncion G. P., (2002). Ontology Languages for the Semantic Web, IEEE
    Intelligent Systems, 54-60.
    3. Bain, W. M., (1998). A Case-Based Reasoning System for Subjective
    Assessment, In Proceedings of the 5th Annual National Conference on Artificial
    Intelligence AAAI-86, 523-527.
    4. Beckman, T., (1997). Implementing the Knowledge Organization in
    Government, Paper and Presentation, 10th National Conference on Federal
    Quality.
    5. Bergmann, R., and Schaaf, M., (2003). Structural Case-Based Reasoning and
    Ontology-based Knowledge management: a perfect match? Journal of Universal
    Computer Science, Vol. 9, No. 7, 608-626.
    6. Bloor, M. S., (1991). STEP - standard for the exchange of product model data,
    Standards and Practices in Electronic Data Interchange, IEE Colloquium on,
    Page: 2/1 - 2/3.
    7. Braga, R. M. M., Mattoso M., and Werner C. M. L., (2000). Using Ontologies
    for Domain Information Retrieval, Database and Expert Systems Applications,
    p.836.
    8. Carayannis, E. G., (1998). The strategic management of technological learning in
    project/program management: the role of extranets, intranets and intelligent
    agents in knowledge generation, diffusion, and leveraging, Technovation,
    Volume 18, Issue 11, 697-703.
    9. Carbonell, J. G., (1983). Derivational Analogy and Its Role in Problem Solving,
    In Proceedings of the 3rd Annual National Conference on Artificial Intelligence
    AAAI-83, Washington, D.C., AAAI, Morgan Kaufmann Publishers.
    10. Cavalla, D., (2003). The extended pharmaceutical enterprise, Drug Discovery
    Today, Volume 8, Issue 6, 267-274.
    11. Chaudhury, S., Singha, T., and Goswami., P. S., (2004). Distributed fuzzy casebased reasoning, Applied Soft Computing, Vol. 4, Issue 4, 323-343.
    12. Chen, C. L., Wang, S. N., Hsieh, C. T. and Chang, F. Y., (1999). Theoretical
    analysis of a fuzzy-logic controller with unequally spaced triangular membership
    functions, Fuzzy Sets and Systems, Vol. 101, No. 1, 87-108.
    13. Chen, H. Y., and Chang, Y. M., (2003). Information Sharing, R&D
    Collaboration, and R&D Subsidy in International Markets, Pan Pacific
    Management Review, 6:2, 135-157.
    14. Chen, K. Y., (2000). A Method of Hierarchical Case Representation in
    Case-Based Reasoning Artificial Intelligent Laboratory, E.E. Department of
    National Chung Cheng University.
    15. Chen, Y. M., and Hsiao, Y. T., (1997). A Collaborative Data Management
    Framework for Concurrent product and process Development. International
    Journal of Computer Integrated Manufacturing, Vol. 10, No. 6, 446-469.
    16. Chen, Y. M., and Jan, Y. D., (2000). Enabling allied concurrent engineering
    through distributed engineering information management. Robotics and
    Computer-Integrated Manufacturing, 16:1, 9-27.
    17. Chen, Y. M., and Wei, C. L., (1997). Computer-Aided Feature Based Design for
    Net Shape Manufacturing. Journal of Computer Integrated Manufacturing
    Systems. Vol. 10, No. 2, 147-164.
    18. Chen, Y. M., Lee, R. S., Ho, C. T., (1996). A Framework for Integration of
    Design and Knowledge Based Environment. Journal of the Chinese Society of
    Mechanical Engineers, Vol. 17, No. 6, 587-599.
    19. Chou, C., (2002). Developing the e-Delphi system: a web-based forecasting tool
    for educational research, British Journal of Educational Technology, Vol. 33, No.
    2, 234-236.
    20. Coombs, R.; Hull, R., (1998). Knowledge management practices' and
    path-dependency in innovation Research Policy, Vol: 27, Issue: 3, 237-253.
    21. Crampes, M., Ranwez, S., (2000). Ontology-supported and ontology-driven
    conceptual navigation on the World Wide Web, Proceedings of the eleventh
    ACM on Hypertext and hypermedia, 191-199.
    22. Cutkosky, M. R., Tenenbaum, J. M. and Glicksman, J. (1996). Madefast:
    collaborative engineering over the Internet, Communications of the ACM, Volume 39, Issue 9, 78-87.
    23. Daconta, M. C., Obrst, L. J. and Smith, K. T., (2003). The semantic web: a guide
    to the future of XML, web service, and knowledge management. Indianapolis, IN:
    Wiley Publishing, Inc.
    24. de Laat, P. B., (2005). Trusting Virtual Trust, Ethics and Information
    Technology, Volume 7, Number 3, 167-180.
    25. Decker, S., Erdmann, M., Fensel, D. and Studer, R., (1999). Ontobroker:
    Ontology Based Access to Distributed and Semi-Structured Information.
    Meersman, R et al. (Eds), Semantic Issues in Multimedia Systems. Proceedings
    of DS-8. Boston: Kluwer Academic Publisher. 351-369.
    26. Demarest, M., (1997). Understanding Knowledge Management Long Range
    Planning, Vol. 30, Issue 3, 321-322,374-384.
    27. Drucker, P., (1959). Landmarks of tomorrow: A Report on the New"
    Post-Modern" World, Harper & Rowe, New York.
    28. Drucker, P., (1969). The Age of Discontinuity: Guidelines to Our Changing
    Society. Harper & Row, New York.
    29. Dubé, L., Paré, G., (2001). Global Virtual Teams, Communications of the ACM,
    44:12, 71-73.
    30. Falchi, F., Gennaro, C. and Zezula, P., (2008). Nearest neighbor search in metric
    spaces through Content-Addressable Networks, Information Processing &
    Management, Vol. 44, No. 1, 411-429.
    31. Fensel, D., (2001). Ontologies: A silver bullet for Knowledge Management and
    E-Commerce, Springer.
    32. Fernandez-Lopez, M., Gonez-Perez, A., Pazos, A., Pazos, J., (1997).
    Methontology: From Ontological Art Towards Ontological Engineering, Spring
    Symposium on Ontological Engineering of AAAI. Stanford University.
    33. Furst, S. A., Reeves, M., Rosen, B., and Blackburn, R. S., (2004). Managing the
    life cycle of virtual teams, Academy of Management Executive, Vol. 18, No. 2,
    6-20.
    34. Gassmann, O. and von Zedtwitz, M., (1999). Organizing virtual R&D teams:
    towards a contingency approach. Management of Engineering and Technology.
    v1. 198-199.
    35. Gassmann, O. and von Zedtwitz, M., (2003). Trends and determinants of
    managing virtual R&D teams, R&D Management, Volume 33, Issue 3, 243-262.
    36. Gause, D. C. and Weinberg, G. M., (1989). Exploring Requirements: Quality
    Before Design, Dorset House Publishing Co.
    37. Gladstone, B., (2000). From Know-How to Knowledge: the Essential Guide to
    Understanding and Implementing Knowledge Management, Spiro Press.
    38. Gomez-Perez, A., Corcho-Garcia, O., Fernandez-Lopez, M., (2003). Ontological
    Engineering, Springer-Verlag.
    39. Gruber, T. R., (1993). A Translation approach to Portable Ontology
    Specification, Knowledge Acquisition, Vol. 5, No. 2, 199-220.
    40. Hattori, K., and Tor, Y., (1993). Effective algorithms for the nearest neighbor
    method in the clustering problem, Pattern Recognition, Vol.26, No.5, 741-746.
    41. Hendriks, P. H. J. and Vriens, D. J., (1999). Knowledge-based systems and
    knowledge management: Friends or foes?, Information and Management, 35:2,
    113-125.
    42. Hong, T. P., and Lee, C. Y., (1996). Induction of fuzzy rules and membership
    functions from training examples, Fuzzy Sets and Systems, Vol.84, 33-47.
    43. Hoppner, F., Klawonn, F., Kruse, R., and Runkler, T., (1999). Fuzzy Cluster
    Analysis, John Wiley & Sons Ltd.
    44. Hsiang, S. H. and Lin, Y. W., (2008). Application of fuzzy theory to predict
    deformation behaviors of magnesium alloy sheets under hot extrusion, Journal of
    Materials Processing Technology, Vol. 201, No. 1-3, 138-144.
    45. Jia, J. and Fan, L., (2008). Research Framework of Human Resource
    Development Based on Competency about Knowledge Enterprise, International
    Journal of Business and Management, Vol.3, No. 11, 107-111.
    46. Johannessen, J. A., Olsen, B., & Olaisen. J., (1999). Aspects of innovation theory
    based on knowledge management, International Journal of Information
    Management, 19, 121-139.
    47. Jonsson, A. and Kalling, T., (2007). Challenges to knowledge sharing across
    national and intra-organizational boundaries: case studies of IKEA and SCA
    Packaging, Knowledge Management Research & Practice (2007) 5, 161–172.
    48. Jovanovic J., Tomasevic, V. and Dudukovic, J., (2007). Web based R&D collaboration, Proceedings of the 7th Conference on 7th WSEAS International
    Conference on Applied Informatics and Communications - Volume 7 table of
    contents, Pages 386-389.
    49. Katzy, B. and Sung, G., (2003). Building the Knowledge Economy: Issues,
    Applications, Case Studies. Tokyo, Japan: Ohmsha, ch. State-of-the-art of virtual
    organization modeling.
    50. Kim, M. H., Jang, D. S. and Yang, Y. K., (2001). A robust-invariant pattern
    recognition model using Fuzzy ART, Pattern Recognition, Vol. 34, No. 8, pp.
    1685-1696.
    51. Kolodner J. L., (1993). Case-Based Reasoning, Morgan Kaufmann Publishers.
    52. Kuo, R. J., Kuo, Y. P., and Chen, K. Y., (2005). Developing a diagnostic system
    through integration of fuzzy case-based reasoning and fuzzy ant colony system,
    Expert Systems with Applications, Vol. 28, Issue 4, 783-797.
    53. Li, W., and Shen, W. (2008). Collaborative design: New methodologies and
    technologies, Computers in Industry, Volume 59, Issue 9, 853-854.
    54. Liu, B. and Liu, S., (2007). Value Chain Coordination with Contracts for Virtual
    R&D Alliance Towards Service, Wireless Communications, Networking and
    Mobile Computing, 2007, International Conference on, 3367-3370.
    55. Lopes, M. M., Minussi, C. R. and Lotufo, A. P., (2005). Electric load forecasting
    using a fuzzy ART&ARTMAP neural network, Applied Soft Computing, Vol. 5,
    No. 2, 235-244.
    56. Maier, R. and Hädrich, T., (2006). Centralized Versus Peer-to-Peer Knowledge
    Management Systems, Knowledge and Process Management, Volume 13, Issue
    1, 47-61.
    57. Mechitov, A. I., and Moshkovich, H. M., (1995). Knowledge Acquisition Tool
    for Case Based Reasoning System, Expert Systems with Application, Vol. 9, No.
    2, 201-205.
    58. Moore, P. R., Ng, A. H. C., Yeo, S. H., Sundberg, M., Wong, C. B. and De Vin,
    L. J., (2008). Advanced machine service support using Internet-enabled
    three-dimensional-based virtual engineering, International Journal of Production
    Research, 46:15, 4215-4235.
    59. Nagendra Prasad, M. V., (2000). Distributed Case-Based Learning, Fourth
    International Conference on Multi-Agent Systems, 2-22.
    60. Narulab, R., (2002). R&D collaboration by SMEs: new opportunities and
    limitations in the face of globalisation, Technovation, Volume 24, Issue 2, Pages
    153-161.
    61. Natalya, F. N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W., and
    Musen, M. A., (2001). Creating Semantic Web Contents with Protege-2000,
    IEEE Intelligent Systems, Vol. 16, No. 2, 60-71.
    62. Neches, R, Flkes, R. E., Finin, T., Gruber, T. R., Senator, T., Swartout, W. R.,
    (1991). Enabling Technology for Knowledge Sharing, AI Magazine, Vol. 12,
    No. 3, 36-56.
    63. Nonaka, I., (1994). A Dynamic theory of organizational knowledge creation.
    Organization Science, Vol. 5, No. 1, 14-37.
    64. Pacella, M., Semeraro, Q. and Anglani, A., (2004). Manufacturing quality
    control by means of a Fuzzy ART network trained on natural process data,
    Engineering Applications of Artificial Intelligence, Vol. 17, No. 1, 83-96.
    65. Paul, E. v. d. V., Nicolaas, J. I. M., (1998). Bottom-Up Construction of
    Ontologies. IEEE Transaction on Knowledge and data Engineering. Vol. 10, No.
    4, 513-526.
    66. Petrash, G., (1996). Dow’s Journey to a Knowledge Value Management Culture,
    European Management Journal, 14, 365-373.
    67. Plaza, E., and McGinty, L., (2005). Distributed case-based reasoning, The
    Knowledge Engineering Review, 20:3, 261-265.
    68. Riesbeck, C. K., and Schank, R. C., (1992). From training to teaching:
    Techniques forecast-based ITS, In H. Burns, J.W. and C.L. Redfield (Eds.),
    Intelligent Tutoring System: Education in Design, Hillsdale, 177-193, New
    Jersey.
    69. Sarkar, M., (2007). Fuzzy-rough nearest neighbor algorithms in classification,
    Fuzzy Sets and Systems, Vol. 158, No. 19, 2134-2152.
    70. Schank, R. C. and Abelson, R. P., (1977). Scripts, Plans, Goals and
    Understanding, Lawrence Erlbaum Associates, Hillsdale, N. J.
    71. Schank, R., (1982). Dynamic Memory: A Theory of Learning in Computers and
    People, Cambridge University Press, New York.
    72. Smyth, B. and Keane, M., (1996). Using Adaptation knowledge to Retrieve and
    adapt design cases, Journal of Knowledge Based Systems, 9(2), 127-135.
    73. Staab, S., Schnurr H. P., Studer, R., Sure, Y., (2001). Knowledge Process and
    Ontology, IEEE Intelligent System, Vol. 16, No. 1, 26-34.
    74. Strader, T. J.; Lin, F.R.; Shaw, M. J., (1998). Information infrastructure for
    electronic virtual organization management, Decision Support Systems, Volume
    23, Issue 1, 75-94.
    75. Uschold, M., Gruninger, M., (1996). Ontologies: Principles, Methods and
    Applications, Knowledge Engineering Review, Vol. 11, No. 2, 93-55.
    76. W3C, (2003). Resource Description Framework (RDF) Concepts and Abstract
    Syntax, Working Draft 05 September 2003.
    77. Wang, G., Li, F. and Liu, X., (2008). The Development of the Retailing Industry
    in China: 1981–2005, Journal of Marketing Channels, Vol. 15(2/3), 145-166.
    78. Watson, I., (1999). Case-based reasoning is a methodology not a technology,
    Knowledge-Based Systems, Vol. 12, 303-308.
    79. Watson, I., (2003). Applying Knowledge Management: Techniques for Building
    Corporate Memories, Morgan Kaufmann Publishers.
    80. Watson. I. and Marir, F., (1994). Case-Base Reasoning: A Review. The
    Knowledge Engineering Review, Vol. 9, No. 4, 355-381.
    81. Wiig, K. M., (1997). Knowledge Management: Where Did It Come From and
    Where Will It Go?, Expert Systems with Applications, Vol. 13, No. 1, 1-14.
    82. Wilke, W., Bergmann, R., (1998). Techniques and Knowledge used for
    Adaptation during Case-Based Problem Solving, IEA.
    83. Wilson, R. G., (1998). A genetic algorithm for circulant euclidean distance
    matrices, Applied Mathematics and Computation, Vol. 97, No. 2-3, pp. 197-208.
    84. Zhang, W. Y., and Yin, J. W., (2008). Exploring Semantic Web technologies for
    ontology-based modeling in collaborative engineering design, The International
    Journal of Advanced Manufacturing Technology, Volume 36, Numbers 9-10,
    833-843.
    85. 王中宏,支援新產品研發的整合性知識管理系統,國立中央大學資訊管理研
    究所碩士論文,民國九十六年。
    86. 朱科銘,新產品開發之案例式推理系統研究,國立高雄應用科技大學工業工
    程與管理研究所碩士論文,民國九十五年。
    87. 吳天明,本體論建置稅務知識庫-以執行業務為例,國立成功大學工程科學
    研究所碩士論文,民國九十五年。
    88. 卓萬全,以階層式案例表達案例適應知識於案例式推理之研究與應用,中正
    大學電機工程研究所碩士論文,民國九十四年。
    89. 張豪,協同案例式推理之新產品開發,國立高雄應用科技大學工業工程與管
    理研究所碩士論文,民國九十六年。
    90. 陳彥杰,功能特徵與工程規格為基之設計參考模式檢索技術研發,國立成功
    大學製造工程研究所碩士論文,民國九十四年。
    91. 游景宏,關於工具機改善知識獲取、蓄積與應用模式之研究,東海大學工業
    工程研究所碩士論文,民國九十年。
    92. 黃佳字,渦輪葉片維修製程規劃系統研究,國立中山大學機械與機電工程學
    系研究所碩士論文,民國九十一年。
    93. 黃建華,案例式推理於CNC工具機概念設計階段的應用,逢甲大學工業工程
    與系統管理研究所碩士論文,民國九十五年。
    94. 楊凱傑,以本體論為基礎的可重用軟體元件搜尋方法之研究,國立成功大學
    資訊管理研究所碩士論文,民國九十二年。
    95. 蘇建源,模糊邏輯與資料探勘技術為基礎在顧客關係管理上之研究與應用,
    南華大學資訊管理研究所碩士論文,民國九十三年。

    下載圖示 校內:2011-06-17公開
    校外:2012-06-17公開
    QR CODE