簡易檢索 / 詳目顯示

研究生: 蔡永紘
Tsai, Yong-Hong
論文名稱: 螢光粒子應用於側流層析法檢測人類絨毛膜促性腺激素之最佳化
Optimization of Fluorescent Particles by Lateral Flow Assay for Human Chorionic Gonadotropin
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 螢光粒子側流免疫層析法影像判讀田口方法最佳化
外文關鍵詞: fluorescence particle, lateral flow assay, Taguchi methods, cut-off value, optimization
相關次數: 點閱:101下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用螢光粒子製備新一代驗孕檢測試劑,其提高三明治型免疫反應檢測靈敏度,突破傳統金奈米粒子檢測閾值限制,摒除影像擷取環境干擾,使檢測試劑於相同抗原濃度測試時,達到最佳線性度。
    研究中各項測試皆使用自製影像擷取裝置與本實驗室開發之T線判讀法,配合Matrix Laboratory (MATLAB)分析軟體進行定量分析,改善定性判讀誤差缺失,最後導入田口方法進行最佳化設計。研究結果顯示,以一步共價法、混和反應儀器強度4及鍵結反應劑反應30分鐘時,鍵結效率可提高42.12%,品質損失降低88.2%;使用PAL視訊標準,亮度提高12.5%,對比提高12.5%,色調降低12.5%時,T線相對灰階值提高41.08%,品質損失降低49%。此外,螢光接hCG二抗濃度為30 μg/mL、樣品墊緩衝液pH = 4與抗原稀釋液為100 μL時,SN比提高了6.308 dB,品質損失降低76.7%;結合最佳化影像擷取裝置,可使hCG檢測試劑檢測極限達6.25 mIU/mL,成功地突破閾值25 mIU/ mL限制,灰階-hCG濃度轉換曲線決定係數(Coefficient of determination)達0.977,代表本研究可利用此轉換曲線進行定量分析。

    This thesis presents the key factors influencing the analyte detection limit of the sandwich immunochromatographic assay and reduction of cut-off value using fluorescent particles instead of colloid gold. The combination with image capture device and test line color analysis method. MATLAB was successfully quantitative the concentration of Human Chorionic Gonadotropin antigen transformed from test line color. In the Taguchi method, when we used one-step covalent, Vortex level 4 and EDC reaction 30 minutes, the bonding efficiency can be increased by 42.12%. When we used PAL video standard, brightness increased by 12.5%, contrast increased by 12.5% and hue decreased by 12.5%, and the relative grayscale increased by 41.08%. In addition, we did not freeze-dried test paper when completing the test paper by lateral flow assay process. When we used the hCG 2nd-fluorescence concentration 30 μg/mL, Antigen dilution volume 100 μL and sample pad buffer pH=4, the signal-to-noise ratio (SN ratio) increased by 6.308 dB. With the above conditions and the image capture device, the cut-off value decreased from 25 mIU/mL to 6.25 mIU/mL.

    摘要 I EXTENDED ABSTRACT II 誌謝 VI 縮寫表 VII 目錄 IX 圖目錄 XV 表目錄 XVIII 第一章 緒論 1 1-1 研究背景 1 1-2 免疫分析法 3 1-2-1 免疫分析基本理論 4 1-2-2 抗原與抗體定義 4 1-2-3 抗原與抗體的結合力 6 1-2-4 免疫分析檢測種類 7 1-2-5 免疫分析偵測方法 8 1-3 文獻回顧 12 1-3-1 人類絨毛膜促性腺激素 12 1-3-1-1 hCG於人體之來源與作用 13 1-3-1-2 hCG於妊娠檢測之應用 14 1-3-1-3 hCG於腫瘤標記之應用 15 1-3-1-4 hCG驗孕免疫反應檢測試劑 15 1-3-2 影像判讀簡介 19 1-3-2-1 影像判讀與視覺函數 19 1-3-2-2 影像判讀之發展 21 1-3-3 田口方法簡介 25 1-3-4 螢光粒子簡介 26 1-4 研究動機與目的 27 1-5 研究架構 28 第二章 影像擷取系統與hCG檢測試劑製程 30 2-1 影像擷取系統製作 30 2-1-1 影像擷取裝置硬體設計 30 2-1-2 影像判讀軟體撰寫 33 2-1-3 讀取C、T線之演算法:半波峰 34 2-2 粒子鍵結製程與鍵結率測定 36 2-2-1 螢光粒子介紹 36 2-2-2 二次抗體-螢光粒子鍵結 37 2-2-2-1 一步共價法與激活共價法 37 2-2-2-2 BCA蛋白定量分析法 40 2-3 側流層析試紙條製作 42 第三章 實驗與研究方法 44 3-1 實驗儀器與設備 44 3-1-1 渦旋混和器 44 3-1-2 紫外光-可見光吸收光譜儀 45 3-1-3 冷凍真空乾燥機 46 3-1-4 陶瓷點膠機 47 3-2 實驗藥品 49 3-3 實驗方法 51 3-3-1 田口方法 51 3-3-2 理想機能與S/N比 52 3-3-3 各實驗的控制因子 54 3-3-4 直交表 56 3-3-5 hCG濃度呈色 58 第四章 結果與討論 59 4-1 鍵結效率最佳化分析 59 4-1-1 鍵結效率控制因子及水準 59 4-1-2 L18(21x37)直交表 60 4-1-3 品質特性與S/N比因子反應分析 62 4-1-4 S/N比與品質特性變異分析 65 4-1-5 品質特性與S/N比因子反應之信賴界限 68 4-1-6 預測值與確認實驗 71 4-1-7 確認實驗之信賴區間 72 4-1-8 品質損失計算 74 4-2 影像擷取環境最佳化分析 75 4-2-1 影像擷取環境控制因子及水準 75 4-2-2 L18(21x37)直交表 76 4-2-3 品質特性與S/N比因子反應分析 77 4-2-4 S/N比與品質特性變異分析 79 4-2-5 品質特性與S/N比因子反應之信賴界限 82 4-2-6 預測值與確認實驗 84 4-2-7 確認實驗之信賴區間 86 4-2-8 品質損失計算 87 4-3 濃度與灰階曲線最佳化分析 88 4-3-1 濃度與灰階曲線控制因子及水準 88 4-3-2 L18(21x37)直交表 89 4-3-3 S/N比因子反應分析 91 4-3-4 S/N比變異分析 92 4-3-5 預測值與確認實驗 94 4-3-6 品質損失計算 95 4-3-7 濃度與灰階曲線 96 第五章 結論與建議 98 5-1 結論 98 5-2 建議 100 參考文獻 101

    [1] T. Porstmann and S.T. Kiessig, “Enzyme immunoassay techniques and overview,” Journal of Immunological Methods, 150, pp. 5-21, 1992.
    [2] 何敏夫,臨床生化學, 合記圖書出版社, 1992。
    [3] R. H. Garrett and C. M. Grisham, Biochemistry, Saunders College Publishing, 1995.
    [4] 廖國棠,金奈米粒子標記物在免疫分析、DNA 序列分析及微管道晶片系統分析上的應用,國立中山大學化學研究所博士論文,民國九十四年。
    [5] E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay, ElISA III. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes,” Journal of Immunology, 109, pp. 129-135, 1972.
    [6] T. Watanabe, Y. Ohkuno, H. Matsuoka, H. Kimura, Y. Sakai, Y. Ohkaru, T. Tanaka, and Y. Kitaura, “Development of a simple whole blood panel test for detection of human heart –type fatty acid-binding protein,” Clinical Biochemistry, 34, pp. 257-263, 2001.
    [7] M. Hedenfalk, P. Adlercreutz, and B. Mattiasson, “Modulation of the measuring range of a radioimmunoassay using an organic water two phase system,” Analytica Chimica Acta, 341, pp. 269-274, 1997.
    [8] F. Hardy, L. Djavadi-Ohaniance and M. E. Goldberg, “Measurement of antibody/antigen association rate constants in solution by a method based on the enzyme-linked immunosorbent assay,” Journal of immunological methods, 200, pp. 155-159, 1997.
    [9] P. Onnerfjord, S. Eremin, J. Emneus and G. Marko-Varga, “Fluorescence polarisation for immunoreagent characterization,” Journal of immunological methods, 213, pp. 31-39, 1998.
    [10] J. A. Schmid and A. Billich, “Simple method for high sensitivity chemiluminescence ELISA using conventional laboratory equipment,” BioTechniques, 22, pp. 278, 1997.
    [11] C. A. Janeway, P. Travers, M. Walport, and M. J. Shlomchik, Immunobiology, Garland Science, 2001.
    [12] A. J. Lapthorn, D. C. Harris, A. Littlejohn, J. W. Lustbader, R. E. Canfield, K. J. Machin, F. J. Morgan and N. W. Isaacs, “Crystal structure of human chorionic gonadotropin,” Nature, 369, pp.455-461, 1994.
    [13] J. G. Pierce and T. F. Parsons, “Glycoprotein Hormones: Structure and Function,” Annual Reviews Biochemistry, 50, pp.465-495, 1981.
    [14] S. Birken, Y. Maydelman, M. A. Gawinowicz, A. Pound, Y. Liu and A. S. Hartree, “Isolation and characterization of human pituitary chorionic gonadotropin,” Endocrinology, 137, pp.1402-1411, 1996.
    [15] L. A. Cole and A. Kardana, “Discordant Results in Human Chorionic Gonadotropin Assays,” Clinical Chemistry, 38, pp.263-270, 1992.
    [16] R. Bellisario, R. B. Carlsen and O. P. Bahl, “Human Chorionic Gonadotropin Linear Amino Acid Sequence of The α Subunit,” Journal of Biological Chemistry, 248, pp.6796-6809, 1973.
    [17] R. B. Carlsen, O. P. Bahl and N. Swawinathan, “Human Chorionic Gonadotropin Linear Amino Acid Sequence of The β Subunit,” Journal of Biological Chemistry, 248, pp.6810-6827, 1973.
    [18] http://life.nthu.edu.tw/~scwu/ls6342/hcg/hcg.html
    [19] goo.gl/eR9hbT
    [20] L. A. Cole, “New discoveries on the biology and detection of human chorionic gonadotropin,” Reproductive Biology and Endocrinology, 7, pp. 8, 2009.
    [21] R. Hoermann, G. Spoettl, R. Moncayo and K. Mann, “Evidence for the presence of human chorionic gonadotropin (hCG) and free beta-subunit of hCG in the human pituitary,” Journal of Clinical Endocrinology & Metabolism, 71, pp.179-186, 1990.
    [22] J. J. Gregory and J. L. Finlay, “Alpha-fetoprotein and beta-human chorionic gonadotropin: their clinical significance as tumour markers,” Drugs, 57, pp.463-467, 1999.
    [23] U. A. Kayisli, B. Selam, O. G. Kayisli, R. Demir and A. Arici, “Human chorionic gonadotropin contributes to maternal immunotolerance and endometrial apoptosis by regulating Fas-Fas ligand system,” Journal of Immunology, 171, pp.2305-2313, 2003.
    [24] J. Askling, G. Erlandsson, M. Kaijser, O. Akre and A. Ekbom, “Sickness in pregnancy and sex of child,” Lancet, 354, pp.2053, 1999.
    [25] X. G. Fan and Z. Q. Zheng, “A Study of Early Pregnancy Factor ctivity in Preimplantation,” American Journal of Reproductive Immunology, 37, pp.359-364, 1997.
    [26] http://www.fertilityplus.com/faq/hpt.html
    [27] http://www.firstep.com.tw/chinese/images/download0300.pdf
    [28] L. A. Cole, Y. X. Wang, M. Elliott, M. Latif, J. T. Chambers, S. K. Chambers and P. E. Schwartz, “Urinary Human Chorionic Gonadotropin Free β-Subunit and β-Core Fragment: A New Marker of Gynecological Cancers,” Cancer Research, 48, pp.1356-1360, 1988.
    [29] Y. Kato and G. B. Braunstein, “β-core fragment is a major form of immunoreactive urinary chorionic gonadotropin in uman pregnancy,” Journal of Clinical Endocrinology & Metabolism, 66, pp.1197-1201, 1988.
    [30] R. W. McNaught and J. T. France, “Studies of the biochemical basis of steroid sulphatase deficiency: Preliminary evidence suggesting a defect in membrane-enzyme structure,” Journal of Steroid Biochemistry, 13, pp. 363-373, 1980.
    [31] 徐敘瑢與陳憲偉,光電材料與顯示技術,五南文化事業出版, 2007.
    [32] G. Harrison, P. Haffey and E. E. Golub, “A nanogram-level colloidal gold single reagent quantitative protein assay,” Analytical Biochemistry, 380, pp.1-4, 2008.
    [33] W. Leung, C. P. Chan, T. H. Rainer, M. Ip, G. W.H. Cautherley and R. Renneberga, “InfectCheck CRP barcode-style lateral flow assay for semi-quantitative detection of C-reactive protein in distinguishing between bacterial and viral infections,” Journal of Immunological Methods, 336, pp.30-36, 2008.
    [34] C. Abe, K. Hirano and T. Tomiyama, “Simple and Rapid Identification of the Mycobacterium tuberculosis Complex by Immunochromatographic Assay Using Anti-MPB64 Monoclonal Antibodies,” Journal of Clinical Microbiology, 37, pp.3693-3697, 1999.
    [35] W. N. Zhang and Z. Y. Zhao, “Three-color Data Reproduction Algorithm and Implementation for the Color Image Based on CCD and DSPs,” Computer Engineering, 28, pp.111-113, 2002.
    [36] R. Z. Zhou, J. He and Z. L. Hong, “Adaptive Algorithm of Auto White Balance for Digital Camera,” Journal of Computer Aided Design & Computer Graphics, 17, pp.529-533, 2005.
    [37] D. Z. Zheng, Z. L. Wu and S. Wang, “Detecting Method of Quantitative Colloidal Gold Test Strip Concentration Based on the DSP Image Processing,” Proc. IEEE 4th International iCBBE Conference (IEEE iCBBE 2010), pp.1-4, 2010.
    [38] H. Y. Jiang and M. Du, “Research on the Detection of Gold Immunochromatographic Assay by the Image Histogram Feature Vectors and Fuzzy C-means,” Proc. IEEE 8th International FSKD Conference (IEEE FSKD 2011), pp.467-471, 2011.
    [39] http://alumni-voice.nctu.edu.tw/Alumni404/404-27-31.pdf
    [40] J. L. Rosa, A. Robin, M. B. Silva, C. A. Baldan and M. P. Peres, “Electrodeposition of copper on titanium wires: Taguchi experimental design approach,” Journal of Materials Processing Technology, 209, pp. 1181-1188, 2009.
    [41] R. S. Rao, R. S. Parkasham, K. K. Prasad, S. Rajesham, P. N. Sama and L. V. Rao, “Xylitol production by Candida sp.: parameter optimization using Taguchi approach,” Process Biochemistry, 39, pp. 951-956, 2004.
    [42] 陳東煌,功能性粉末:複合奈米粒子–有趣的人造原子,科學發展,408期,40 ~ 45頁,2006年12月
    [43] Fluoro-Max Fluorescent Beads with Europium Chelate, Thermo Fisher, Inc
    [44] Particle Reagent Optimization - Recommended Adsorption and Covalent Coupling Procedures, Thermo Fisher,Inc. , 2010
    [45] Pierce BCA Protein Assay Kit instruction, Thermo Fisher, Inc.

    下載圖示 校內:2018-01-01公開
    校外:2020-01-01公開
    QR CODE