| 研究生: |
劉家源 Liu, Chia-Yuan |
|---|---|
| 論文名稱: |
應用在2.4 GHz高線性度低雜訊放大器設計與低相位雜訊2.87 GHz CMOS LC壓控振盪器 Design of 2.4 GHz High Linearity LNA and Low Phase Noise 2.87 GHz CMOS LC VCO |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 壓控振盪器 、高線性度低雜訊放大器 |
| 外文關鍵詞: | high linearity low noise amplifier, voltage-controlled oscillator |
| 相關次數: | 點閱:101 下載:35 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文關注於2.4 GHz ISM頻段及2.87 GHz的射頻前端接收機子電路的設計。論文內容主要分為兩個部分:第一部分2.4 GHz低雜訊放大器的設計;第二部分為為低相位雜訊2.87 GHz CMOS LC壓控振盪器的設計。所設計的電路皆使用 TSMC 0.18-µm CMOS 製程實現,操作電壓為 1.8V,兩顆晶片除了在TSRI做室溫下的量測,也透過實驗室的極低溫量測環境測試在極低溫下的特性以作為相關於前瞻量子位元讀取電路應用的前期探討。
2.4 GHz高線性度低雜訊放大器的設計主要是透過額外一顆MOS做出分流路徑來增加放大器的線性度,使用一級的放大器架構達到10.78的gain值,因此無串接多級的架構,NF做到5dB,Input matching為-37 dB,而IIP3為相對較好的-11。
在低相位雜訊2.87 GHz LC壓控振盪器的設計採用了CMOS架構以減少消耗功率,並且在共模點使用一組LC濾波架構來濾除雜訊讓相位雜訊表現更好;在共振腔的部分,可變電容使用MOS varactor,選擇適當偏壓和尺寸下,得到較佳的Q值,以達到較佳的phase noise表現。根據量測結果,壓控振盪器核心消耗功率為 10.5 mW,頻率可調範圍為 19.5 %,1MHz 偏移處的相位雜訊在可調頻率範圍內最佳為-117.6 dBc/Hz 。
外太空衛星通訊和深海水中通訊,可能會面臨極端低溫環境的挑戰,在最後介紹了極低溫下的應用以及極低溫量測環境的操作說明,接著量測上述兩顆晶片在極低溫下與常溫下的表現差異並探討。
This thesis focuses on the design of RF front-end receiver subcircuits for the 2.4 GHz ISM band and 2.87 GHz. The paper content is mainly divided into two parts: the first part is the design of a 2.4 GHz low-noise amplifier; the second part is the design of a low-phase noise 2.87 GHz CMOS LC voltage-controlled oscillator. The designed circuits are all implemented using TSMC 0.18-µm CMOS process with an operating voltage of 1.8V. In addition to being measured at room temperature at TSRI, the two chips are also tested in the laboratory's ultra-low temperature measurement environment to test their characteristics at extremely low temperatures as a preliminary study on the application of forward-looking quantum bit readout circuits.
The design of the 2.4 GHz high linearity low noise amplifier mainly uses an additional MOS to make a shunt path to increase the linearity of the amplifier. A single-stage amplifier architecture is used to achieve a gain value of 10.78, so there is no cascaded multi-stage architecture. The NF is 5dB, the Input matching is -37 dB, and the 〖"IIP" 〗_"3" is a relatively good -11 dBm.
The design of the low phase noise 2.87 GHz LC voltage-controlled oscillator adopts a CMOS architecture to reduce power consumption, and uses a set of LC filter architectures at the common mode point to filter noise for better phase noise performance; in the resonant cavity, the variable capacitor uses a MOS varactor, and the appropriate bias and size are selected to obtain a better Q value to achieve better phase noise performance. According to the measurement results, the core power consumption of the voltage-controlled oscillator is 10.5 mW, the frequency adjustable range is 19.5%, and the phase noise at 1MHz offset is the best -117.6 dBc/Hz within the adjustable frequency range.
Satellite communications in outer space and deep sea water communications may face the challenge of extremely low temperature environments. Finally, the application under extremely low temperature and the operation instructions of extremely low temperature measurement environment are introduced. Then the performance difference of the above two chips under extremely low temperature and normal temperature is measured and discussed.
[1] C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys., vol. 89, 035002, Jul. 2017.
[2] M. Nakahara and T. Ohmi, Quantum Computing From Linear Algebra to Physical Realizations, CRC Press, 2008.
[3] H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nature Phys., vol. 11, no. 5, pp. 393-397, 2015.
[4] V. M. Acosta, E. Bauch, M. P. Ledbetter et al., “Diamonds with a high density of nitrogen vacancy centers for magnetometry applications,” Phys. Rev. B, vol. 80, no. 11, 115202, pp. 1-15, 2009.
[5] M. Chipaux, L. Toraille, C. Larat, et al., “Wide bandwidth instantaneous radio frequency spectrum analyzer based on nitrogen vacancy centers in diamond,” Appl. Phys. Lett., vol. 107, 233502, pp. 1-5, 2015.
[6] D. Le Sage, K. Arai, D. R. Glenn, et al., “Optical magnetic imaging of living cells,” Nature, vol. 496, 12072, Apr. 2013.
[7] M. I. Ibrahim, C. Foy, D. Kim, D. R. Englund, and R. Han, “Room temperature quantum sensing in CMOS: On-chip detection of electronic spin states in diamond color centers for magnetometry,” Dig. Tech. Papers IEEE Symp. VLSI Circuits, pp. 249-250, 2018.
[8] D. Kim, M. I. Ibrahim, C. Foy, M. E. Trusheim, R. Han, and D. R. Englund, “CMOS integrated diamond nitrogen vacancy quantum sensor,” Nature Electron., vol. 2, pp. 284-289, 2019.
[9] D. K. Shaeffer and T. H. Lee, “A 1.5V 1.5GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, May 1997.
[10] Y.-H. Chen, H.-H. Hsieh, and L.-H. Lu, “A 24-GHz receiver frontend with an LO signal generator in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1043–1051, May 2008.
[11] C. Y. Cha and S. G. Lee, “A 5.2-GHz LNA in 0.35-μm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance,” IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 669-672, Apr. 2003.
[12] J. Zhang and D. Zhao, “A 20-GHz ultra-low-power LNA using gm-boosted and current-reuse techniques in 65-nm CMOS for satellite communication terminals,” Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), pp. 81-82, Nov. 2019.
[13] V. K. Purushothaman, E. A. M. Klumperink, R. Plompen, and B. Nauta, “Low-power high-linearity mixer-first receiver using implicit capacitive stacking with 3× voltage gain,” IEEE J. Solid-State Circuits, vol. 57, pp. 245-259, Jan. 2022.
[14] S.-J. Yun, S.-B. Shin, H.-C. Choi, and S.-G. Lee, “A 1mW current-reuse CMOS differential LC-VCO with low phase noise,” ISSCC, vol. 1, pp. 540-616, Aug. 2005.
[15] B. Jafari and S. Sheikhaei, “Phase noise reduction in LC-cross coupled oscillators using sinusoidal tail current shaping technique,” Analog Integr. Circuits Signal Process., vol. 96, no. 1, pp. 125-132, 2018.
[16] I. Mansour et al., “Analysis and implementation of high-Q CT inductor for compact and wide-tuning range Ku-band VCO,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 8, pp. 802-805, Aug. 2020.
[17] H. S. Lee, D. M. Kang, S. J. Cho, C. W. Byeon, and C. S. Park, “Low-power, low-phase-noise gm-boosted 10-GHz VCO with center-tap transformer and stacked transistor,” IEEE Trans. Circuits Syst. II, vol. 67, no. 10, pp. 1710-1714, Oct. 2020.
[18] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[19] B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall, 2012.
[20] A. Van Der Ziel, “Thermal noise in field-effect transistors,” Proc. IRE, vol. 50, no. 8, pp. 1808-1812, Aug. 1962.
[21] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 2007.
[22] B. Razavi, R.-H. Yan, and K. F. Lee, “Impact of distributed gate resistance on the performance of MOS devices,” IEEE Trans. Circuits Syst. I, vol. 41, no. 11, pp. 750-754, Nov. 1994.
[23] J. Rollett, “Stability and power-gain invariants of linear twoports,” IRE Trans. Circuit Theory, vol. 9, no. 1, pp. 29-32, Mar. 1962.
[24] M. L. Edwards and J. H. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Trans. Microw. Theory Techn., vol. 40, no. 12, pp. 2303-2311, Dec. 1992.
[25] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609-2619, Dec. 2005.
[26] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer—a new power-combining and impedance-transformation technique,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 1, pp. 316-331, Jan. 2002.
[27] G. B. Rao, “A high gain and high linear LNA for low power receiver front-end applications,” IEEE Conf. Commun. Signal Process., Apr. 2016.
[28] T. Y. Choi and B. Jung, “A 2.4-GHz resistive feedback LNA in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3019-3029, Nov. 2009.
[29] A. A. Abidi, “Phase noise and jitter in CMOS ring oscillators,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1803-1816, Aug. 2006.
[30] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
[31] P. Andreani and S. Mattisson, “A 2.4-GHz CMOS monolithic VCO based on an MOS varactor,” Proc. ISCAS’99, 1999, vol. 2, pp. 557-560.
[32] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
[33] J. A. McNeill, “Jitter in ring oscillators,” IEEE J. Solid-State Circuits, vol. 32, no. 6, pp. 870-879, Jun. 1997.
[34] W.-C. Cheng, J.-G. Ma, K.-S. Yeo, and M.-A. Do, “A 1 V switchable CMOS LNA for 802.11A/B WLAN applications,” Analog Integr. Circuits Signal Process., vol. 48, pp. 181–184, 2006.
[35] Z. Li and K. K. O, “Packaged single-ended CMOS low noise amplifier with 2.3 dB noise figure and 64dBm IIP2,” Electron. Lett., vol. 40, no. 12, Jun. 10, 2004.
[36] H. C. Lai and Z. M. Lin, “A Low Noise Gain-Variable LNA for 802.11a WLAN,” IEEE Conf. Electron Devices Solid-State Circuits (EDSSC), 2007.
[37] M. Cimino, H. Lapuyade, Y. Deval, T. Taris, and J.-B. Begueret, “Design of a 0.9 V 2.45 GHz Self-Testable and Reliability-Enhanced CMOS LNA,” IEEE J. Solid-State Circuits, pp. 1187–1194, May 2008.
[38] X. Xu, X. Yang, and T. Yoshimasu, “2.4-GHz band ultra-low-voltage LC-VCO IC in 180-nm CMOS,” IEEE Int. Conf. Electron Devices Solid-State Circuits (EDSSC), Singapore, Jun. 2015, pp. 13–16.
[39] X. Wang, X. Yang, X. Xu, and T. Yoshimasu, “2.4-GHz-band low-voltage LC-VCO IC with simplified noise filtering in 180-nm CMOS,” IEEE MTT-S Int. Wireless Symp. (IWS), Shanghai, China, Mar. 2016, pp. 1–3.
[40] L. Xian, L. Wenyuan, and W. Zhigong, “A wide tuning range LC-VCO using switched capacitor array technique,” Int. Symp. Signals, Systems Electron., 2010, pp. 1–4.
[41] M. Wei, R. Negra, S. Chang, and C. Chen, “Wideband complementary CMOS VCO with capacitive-source-degeneration technique,” IEEE EUROCON 2017 - 17th Int. Conf. Smart Technol., 2017, pp. 287–291.
[42] B. Patra, R. M. Incandela, J. P. Van Dijk, H. A. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, et al., “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 309–321, 2018.
[43] B. O. Woods, H. A. Mantooth, and J. D. Cressler, “SiGe HBT compact modeling for extreme temperatures,” Int. Semiconductor Device Research Symp., Dec. 2007, pp. 1–2.
[44] J. D. Cressler and H. A. Mantooth, “Extreme Environment Electronics”, CRC Press, 2017.
[45] S. Weinreb, “Low-noise cooled GaAs FET amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 28, no. 10, pp. 1041–1054, 1980.
[46] A. Kabaoglu and M. B. Yelten, “A cryogenic modeling methodology of MOSFET IV characteristics in BSIM3,” in Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), 2017 14th Int. Conf., IEEE, 2017, pp. 1–4.
[47] D. I. Volkhin, I. L. Novikov, and A. G. Vostretsov, “Cryogenic Low-Noise Amplifier 1-3 GHz,” IEEE Conf. Electron Devices, 2023.
[48] Y. Peng, J. Benserhir, M. Castaneda, A. Fognini, C. Bruschini, and E. Charbon, “A 0.32×0.12 mm² Cryogenic BiCMOS 0.1–8.8 GHz Low Noise Amplifier Achieving 4 K Noise Temperature for SNWD Readout,” in IEEE Trans. Microw. Theory Tech., vol. 72, no. 4, Apr. 2024, pp. 2179–2192.
[49] T.-S. Yang, I.-H. Chen, and L.-H. Lu, “A Cryogenic 2.9–8.6-GHz LNA With Bandwidth Extension Technique for Quantum Applications,” in IEEE Microw. Wireless Technol. Lett., Early Access, Oct. 11, 2024, pp. 1–4.
[50] H. Homulle, "Cryogenic Electronics for the Read-Out of Quantum Processors," Ph.D. dissertation, Delft Univ. Technol., Delft, Netherlands, 2019.
[51] H. O. Güleç and M. B. Yelten, “A Cryogenic LC VCO Utilizing Cryogenic Models of Active Devices”, 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE),Istanbul, Turkey, 2019, pp. 220-224.