簡易檢索 / 詳目顯示

研究生: 廖凝香
Lio, Ieng-Heong
論文名稱: 非均勻葉片彈性支撐之識別
Identification of Elastic Supports of Non-uniform Blade
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 71
中文關鍵詞: 彈性支撐識別葉片微分值積分法
外文關鍵詞: Elastic Supports, Blade, Identification, BFGS, MDQ
相關次數: 點閱:77下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用微分值積法(DQM)與 BFGS之近似牛頓法,來識別非均勻Timoshenko樑及渦輪葉片之彈性支撐的勁度。使用DQM 之彈性邊界條件建立參考模型,同時從實驗的數據建立一個實驗模型,此實驗模型包含低階模態的自然頻率與模態形狀。藉由BFGS之近似牛頓法而將目標函數最小化,使得此彈性支撐勁度的識別問題成為一個最佳化問題。
    本文中探討取樣點數量、模態數量及權值對識別的影響,從文中提出的多個實例顯示,應用本文的方法能得到非常好的識別效果與準確性。

    In this thesis, the differential quadrature method (DQM) and the quasi-Newton method of Broyden, Flectcher, Goldfarb, and Shanno (BFGS) are used to identify stiffnesses of elastic supports of non-uniform Timoshenko beams and turbomachinery blades. By using DQM, reference models with elastic boundary conditions are built up; meanwhile, an experimental model is built from the data of experiment, which include the natural frequencies and mode shapes of low-order modes. The identification problem of stiffnesses is then formulated as an optimization problem in which the objective function is minimized by using the quasi-Newton method of BFGS.
    In this thesis, the effect of the number of sampling points, the number of modes and weighting on identification are investigated. Several examples are employed to demonstrate that the efficiency and accuracy of the present algorithm are very good.

    中文摘要 .............................................i Abstract .............................................ii Acknowledgement ......................................iii List of Tables .......................................iv List of Figures.......................................vi 1. Introduction .....................................1 1.1 Motivation .....................................1 1.2 Literature Review ..............................2 1.2.1 BFGS........................................2 1.2.2 Differential Quadrature Method..............4 2. BFGS Method ......................................6 3. Differential Quadrature Method ...................9 3.1 Basic Concept...................................9 3.2 Modified Relationship..........................11 4. Equation of Motion...............................14 4.1 Timoshenko Beam................................14 4.2 Blade..........................................18 5. Identification...................................26 5.1 Objection Function.............................27 5.2 Determination of the Search Direction..........29 5.2.1 Sensitivity Analysis and Objective Function Gradient ............................................30 5.2.2 Eigenpair Derivatives......................31 5.2.3 Inverse of Hessian Matrix of Objective Function ............................................32 5.3 Determination of Step Length...................32 5.4 Iteration .....................................33 6. Numerical Results and Discussion.................34 7. Conclusion.......................................42 References...........................................44 Appendix ............................................49 Tables...............................................52 Figures..............................................62 自述.................................................70 著作權聲明...........................................71

    [1] Broyden, C. G., “Convergence of a Class of Couble Rank Minimization Algorithms,” Journal of the Institute of Mathematics and Its Applications, Vol 6, pp. 7690 (1970).

    [2] Fletcher, R., “A New Approach to Variable Metric Algorithms,” Computer Journal, Vol 13, pp. 317-322 (1970)

    [3] Goldfarb, D., “A Vamily of Variable Metric Methods Derived by Variational Means,” Mathematics of Computation, Vol 30, pp. 23-26 (1970)

    [4] Shanno, D., “Conditining of Quasi-Newton Methods for Function Minimization,” Mathematics of Computation, Vol 24, pp. 647-657 (1970).

    [5] Nocedal, J., “Theory of Algorithms for Unconstrained Optimization,” Acta Numerica, Vol 1, pp. 199-242 (1992).

    [6] Powell, M. J. D., “Some Global Convergence Properties of a Variable Metric Algorithm Minimiaztion without Exact Line Searchs,” in Cottle, R. W. and Lemke, C. F., (eds) Nonlinear Programming, American Mathematical Society, Providence, RI, pp. 53-72 (1976).

    [7] Byrd, R. H, and Nocedal, J., “A Tool for the Analysis of Quasi-Newton Methods with Application to Unconstrained Minimization,” SIAM Journal of Numerical Analysis, Vol 26, pp. 727-739 (1989).

    [8] Bellman, R. E. and Casti, J., “Differential quadrature and long-term integration,” Journal of Mathethmatics Analysis and Application, Vol 34, pp. 235-238 (1971).

    [9] Bellman, R. E., Kashef, B. G., and Casti, J., “Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations,” Journal. Computer Phys. , Vol 10, pp. 40-52 (1972).

    [10] Choi, S. T., Wu, J. D., Chou, J. D., “Structural Analysis by the Differential Quadrature Method Using the Modified Weighting Matrices,” AIAA Journal, Vol 38, pp. 851-856 (2000).

    [11] Bert, C. W., Wang, X. and Striz, A. G., “Static and Free Vibrational Analysis of Beams and Plates by Differential Quadrature Method.” Acta Mechanics, Vol 102, pp. 11-24 (1994).

    [12] Bert, C. W., Jang, S. K. and Striz, A. G., “Convergence of the DQ method in the analysis of anisotropic plates.” Journal of Sound Vibration 170 pp. 140-144 (1994).

    [13] Malik, M. and Bert, C. W., “Implementing Multiple Boundary Conditions in the DQ Solution of Higher Order PDE’s: Application to Free Vibration of Plates.” International Journal of Numerical Methods Engineering., Vol 39, pp. 1237-1258 (1996).

    [14] Han, J. B., Liew, K. M., “Axisymmetric Free Vibration of Thick Annular Plates,” International Journal Mechanics Science, Vol 41, pp. 1089-1109 (1999).

    [15] Chen, W. L., Striz, A. G., and Bert, C. W., “High-accuracy Plane Stress and Plate Elements in the Quadrature Element Method (QEM),” International Journal of Solids Structure, Vol 37, pp. 627-647 (2000).

    [16] Du, H., Liew, K. M., Lim, M. K., “Generalized Differential Quadrature Method for Buckling Analysis,” Journal of Engineering Mechanics, Vol 122, pp. 95-100 (1996).

    [17] Quan, J. R., Chang, C. T., “New Insights in Solving Distributed System Equations by the Quadrature Method-I. Analysis,” Compute Chemical Engineering, Vol 13, pp. 1071-1024 (1989).

    [18] Quan, J. R., Chang, C. T., “New Insights in Solving Distributed System Equations by the Quadrature Method-II. Numerical Experiments,” Compute Chemical Engineering, Vol 13, pp. 779-788 (1989).

    [19] Shu, C., Richards, B. E., “Application of Generalized Differential Quadarture to Solve Two-Dimensional Incompressible Navier-Stoke Equations,” International Journal of Numerical Methods Fluids, Vol 15, pp. 791-798 (1992).

    [20] Choi, S. T., Wu, J. D., Chou, J. D., “Dynamic Analysis of a Spinning Timoshenko Beam by the Differential Quadrature Method,” AIAA Journal, Vol 38, pp. 851-856 (2000).

    [21] Kuang, J.-H, Hsu, M.-H., “The Effect of Fiber Angle on the Natural Frequencies of Orthotropic Composite Pre-twisted Blades,” Composite Structures, Vol 58, pp. 457-468 (2002).

    [22] Fletcher, R., Practical Methods of Optimization 2nd Edition, Wiley, Chichester, England (1987)

    [23] de Boor C., A Practical Guide to Splines, Springer-Verlag, New York (1987).

    [24] Wang, X. and Bert, C. W., “A New Approach in Applying Differential Quadrature to Static and Free Vibrational Analyses of Beams and Plates,” Journal of Sound Vibration, Vol 162, pp. 566-572 (1993).

    [25] Dimarogonas, A., Vibration for Engineers, Prentice-Hall, USA

    [26] Carnegie, W., “Vibration of Pretwisted Cantilever Blading Allowing for Rotary Inertia and Shear Deflection,” Journal of Mechanical Engineering Science, Vol 6, pp. 105-109 (1964).

    [27] Fu, C. C., “ Computer Analysis of a Rotating Axial-Turbomacine Blade in Coupled Bending-Bending-Torsion Vibrations,” International Journal for Numerical Method in Engineering, Vol 8, pp. 569-588 (1974).

    [28] Moller, P., Friberg, O., “Updating Large Finite Element Models in Structural Dynamics,” AIAA Journal, Vol 36, pp. 1861-1868 (1998)

    [29] Allemang, R. J., and Brown, D. L., “A Correlation Coefficient for Modal Vector Analysis.” Proceedings of the 1st International Modal Analysis Conference, Society for Experimental Mechanics, Bethel, CT pp. 110-116 (1982).

    [30] Sutter, T. R., Camarda, C. J., Walsh J. L., and Adelman H. M., “Comparison of Several Methods for Calculating Vibration Mode Shape Derivatives,” AIAA Journal, Vol 26, pp. 1506-1511 (1988).

    [31] Rudisill, C. S., and Chu, Y., “Numerical Methods for Evaluating the Derivatives of Eigenvalues and Eigenvectors,” AI AA Journal, Vol 13, pp. 834-837 (1975).

    [32] Chankong, V., and Haimes, Y. Y., Multiobjective Decision Making: Theroy and Mehtodology, North-Holland, New York, (1983).

    [33] Cohon, J. L., Multiobjective Programming, Academic Press, New York, (1978).

    [34] Duckstein, L., Multiobjective Optimization in Structural Design: The Model Choice Problem, John Wiley and Sons Ltd., Chichester, UK, (1989)

    [35] Rao, J. S., and Carnegie, W., “Solution of the Equations of Motion of Coupled-Bending Bending Torsion Vibrations of Turbine Blades by the Method of Ritz-Galerkin.” International Journal of Mechanical Science, Vol 12, 875-882. (1970).

    [36] Carr, J. B., “The Effect of Shear Flexibility and Rotatory Inertia on the Natural Frequencies of Uniform Beams.” The Aeronautical Quarterly, Vol 21,79-90 (1970).

    下載圖示 校內:立即公開
    校外:2003-07-09公開
    QR CODE