| 研究生: |
羅庫納 kunal kumar |
|---|---|
| 論文名稱: |
錫鍺場效電晶體及橫向溝槽式閘極功率金氧半場效電晶體之 TCAD 模擬研究 TCAD Simulation-Based Study of Ge1-xSnx FET and Si Lateral Trench Gate Power MOSFETs |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 外文關鍵詞: | MOSFET, CMOS, subthreshold slope ss, LATERAL TRENCH GATE MOSFET, , insulated gate bipolar transistor, breakdown voltage, dielectric constant, Germanium tin, Tunnel FET |
| 相關次數: | 點閱:96 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
穿隧式場效應晶體管有潛力在室溫下克服傳統金氧半場效電晶體的亞閾值斜率極限。它們允許進一步縮小集成電路的電源電壓、閾值電壓和功耗。I-V 族TFET 的主要挑戰之一是由於聲子輔助隧穿通過大的間接帶隙而導致的導通電流不令人滿意。本文致力於討論 IV 族半導體中的直接和間接帶間穿隧效應。儘管 Ge 和 SiGe 具有更小的帶隙和更輕的載流子有效質量,但理論和實驗結果不能令人滿意。為了進一步提高 TFET 性能,在 IV 族半導體中開發直接 BTBT是一種很有前途的方法。 GeSn 已成為一種有前途的替代合金,可在 IV 族材料中實現可調直接帶隙。通過增加 Sn 濃度,弛豫 GeSn 合金的帶隙表現出從間接到直接的轉變。此外,GeSn 比 Ge 具有更小的帶隙和更輕的載流子有效質量。在本論文中,我將討論 GeSn 的場效應晶體。在這項研究中,我們利用
8-k·p 模型來計算 GeSn 能隙和有效質量。此外,考慮了非拋物線、多谷和量子尺寸侷限的效應,我們還探索了 GeSn 物理特性。最後,利用 TCAD 模擬,對包括 TFETs、PNIN TFETs 和 MOSFET 在內的 GeSn 特性進行比較。
我們還分別通過模擬和測量方法分析了功率元件、橫向溝槽式閘極金氧半場效電晶體的電性。在模擬部分,我們使用 Sentaurus TCAD 首先創建了橫向溝槽式閘極金氧半場效電晶體的結構,然後研究了改變氧化溝槽的介電常數對電特性的影響。我們發現,與相對介電常數為 3 ~ 3.9 的最大抗擊穿度相比,氧化物溝槽的相對較高和較低的介電常數都會降低崩潰電壓。這是因為相對較高和較低的介電常數會導致電場過度集中在角落,導致元件較早崩壞。
The Tunnel Field-Effect Transistor (TFET) has the potential to improve upon the limitations of traditional Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) at room temperature. This is because TFETs allow for a reduction in the supply voltage, threshold voltage, and power consumption of integrated circuits. However, one of the main challenges facing Group-IV-based TFETs is the low on-current due to phonon-assisted tunneling in large indirect bandgaps. This article focuses on discussing direct and indirect band-to-band tunneling in Group-IV semiconductors. Although Ge and SiGe have smaller bandgaps and lighter effective masses, their improvement remains unsatisfactory. One promising approach to enhance TFET performance is the exploitation of direct BTBT in Group-IV semiconductors. GeSn has emerged as a promising alternative to achieve tunable direct bandgap among Group IV materials. By increasing the Sn concentration, the bandgap of relaxed GeSn alloys transitions from indirect to direct. This study utilizes an 8-k·p model to calculate the GeSn energy bandgap and effective mass, as well as its physical properties, such as nonparabolicity, multi-valley, and quantum size confinement. The study also simulates and compares GeSn-based TFETs, PNIN TFETs, and MOSFET devices using TCAD. Additionally, the electrical characteristics of power devices and lateral trench gate MOSFETs are analyzed through simulation and measurement methods. The simulation part uses Sentaurus TCAD to create the structure of the lateral trench gate MOSFET and investigate the impact of changing the oxide trench’s dielectric constant on its electrical characteristics. Results show that relatively high and low dielectric constant decreases the breakdown voltage compared to a maximum breakdown immunity with a relative dielectric constant of 3 to 3.9. This is because high and low dielectric constant causes an excessive concentration of electric fields at corners, leading to early device breakdown.
[1] R. Zhang and K. Roy, “Low-power high-performance double-gate fully depleted
soi circuit design,” IEEE Transactions on Electron Devices, vol. 49, no. 5, pp.852–862, 2002.
[2] E. Amat, A. Calomarde, C. G. Almudever, N. Aymerich, R. Canal, and A. Rubio, “Impact of finfet and iii–v/ge technology on logic and memory cell behavior,” IEEE Transactions on Device and Materials Reliability, vol. 14, no. 1, pp. 344–350, 2013.
[3] J.-P. Colinge et al., FinFETs and other multi-gate transistors. Springer, 2008, vol. 73.
[4] H. Lu and A. Seabaugh, “Tunnel field-effect transistors: State-of-the-art,” IEEE Journal of the Electron Devices Society, vol. 2, no. 4, pp. 44–49, 2014.
[5] S. M. Sze, Y. Li, and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2021.
[6] K. J. Kuhn, “Considerations for ultimate cmos scaling,” IEEE transactions on Electron Devices, vol. 59, no. 7, pp. 1813–1828, 2012.
[7] P. Jain, “Simulation and modeling of tunnel field effect transistor,” Ph.D. dissertation, Indian Institute of Technology Kanpur, 2017.
[8] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” nature, vol. 479, no. 7373, pp. 329–337, 2011.
[9] Q. Zhang, W. Zhao, and A. Seabaugh, “Low-subthreshold-swing tunnel transistors,” IEEE Electron Device Letters, vol. 27, no. 4, pp. 297–300, 2006.
[10] K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, “Impact ionization mos (i-mos)-part i: device and circuit simulations,” IEEE Transactions on electron devices, vol. 52, no. 1, pp. 69–76, 2004.
[11] C. Shen, S.-L. Ong, C.-H. Heng, G. Samudra, and Y.-C. Yeo, “A variational approach to the two-dimensional nonlinear poisson’s equation for the modeling of tunneling transistors,” IEEE Electron Device Letters, vol. 29, no. 11, pp. 1252–1255, 2008.
[12] K. Kumar, “Comparative study of symmetric and asymmetric oxide double gate junction less fet,” Journal of Electrical Engineering, Electronics, Control and Computer Science, vol. 8, no. 2, pp. 25–28, 2021.
[13] M. Luisier and G. Klimeck, “Performance comparisons of tunneling field-effect transistors made of insb, carbon, and gasb-inas broken gap heterostructures,” in 2009 IEEE International Electron Devices Meeting (IEDM). IEEE, 2009, pp. 1–4.
[14] R. Pandey, S. Mookerjea, and S. Datta, “Opportunities and challenges of tunnel fets,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12, pp. 2128–2138, 2016.
[15] K.-H. Kao, “Band-to-band tunneling model calibration and design optimization of group iv tunnel fets (kalibratie van band-tot-band tunneling en ontwerpoptimalisatie van groep-iv tunnel-fets),” 2013.
[16] U. E. Avci, R. Rios, K. J. Kuhn, and I. A. Young, “Comparison of power and performance for the tfet and mosfet and considerations for p-tfet,” in 2011 11th IEEE international conference on nanotechnology. IEEE, 2011, pp. 869–872.
[17] P.-Y. Wang and B.-Y. Tsui, “Band engineering to improve average subthreshold swing by suppressing low electric field band-to-band tunneling with epitaxial tunnel layer tunnel fet structure,” IEEE Transactions on Nanotechnology, vol. 15, no. 1, pp. 74–79, 2015.
[18] S. H. Kim, S. Agarwal, Z. A. Jacobson, P. Matheu, C. Hu, and T.-J. K. Liu, “Tunnel field effect transistor with raised germanium source,” IEEE electron device letters, vol. 31, no. 10, pp. 1107–1109, 2010.
[19] Q. Chen, S. Balasubramanian, C. Thuruthiyil, M. Gupta, V. Wason, N. Subba, J. Goo, P. Chiney, S. Krishnan, and A. Icel, “Critical current (ICRIT) based SPICE model extraction for SRAM cell,” 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, pp. 448–451, 2008.
[20] K. Boucart and A. M. Ionescu, “A new definition of threshold voltage in tunnel fets,” Solid-state electronics, vol. 52, no. 9, pp. 1318–1323, 2008.
[21] Y. YUE, “Tunneling field-effect transistors for low power logic: Design, simulation and technology demonstration,” 2013.
[22] H. Iwai, “Roadmap for 22 nm and beyond,” Microelectronic Engineering, vol. 86, no. 7-9, pp. 1520–1528, 2009.
[23] B. J. Baliga, Fundamentals of power semiconductor devices. Springer Science & Business Media, 2010.
60
[24] B. J. Van Zeghbroeck, “Principles of semiconductor devices,” 2011.
[25] N. Iwamuro and T. Laska, “Igbt history, state-of-the-art, and future prospects,” IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 741–752, 2017.
[26] I. Goroff and L. Kleinman, “Deformation potentials in silicon. iii. effects of a general strain on conduction and valence levels,” Physical Review, vol. 132, no. 3, p. 1080, 1963.
[27] J. Bardeen and W. Shockley, “Deformation potentials and mobilities in non-polar crystals,” Physical review, vol. 80, no. 1, p. 72, 1950.
[28] B. J. Baliga, “Trends in power semiconductor devices,” IEEE Transactions on electron Devices, vol. 43, no. 10, pp. 1717–1731, 1996.
[29] J. Wortman, J. Hauser, and R. Burger, “Effect of mechanical stress on p-n junction device characteristics,” Journal of applied physics, vol. 35, no. 7, pp. 2122–2131, 1964.
[30] R. K. Williams, M. N. Darwish, R. A. Blanchard, R. Siemieniec, P. Rutter, and Y. Kawaguchi, “The trench power mosfet: Part i—history, technology, and prospects,” IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 674–691, 2017.
[31] D. Ueda, H. Takagi, and G. Kano, “A new vertical power mosfet structure with extremely reduced on-resistance,” IEEE Transactions on Electron Devices, vol. 32, no. 1, pp. 2–6, 1985.
[32] E. G. Kang, “Performance of non punch-through trench gate field-stop igbt for power control system and automotive application,” Transactions on Electrical and Electronic Materials, vol. 17, no. 1, pp. 50–55, 2016.
[33] R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-sn composition ge1- x sn x alloys grown by molecular beam epitaxy,” Applied physics letters, vol. 99, no. 18, p. 181125, 2011.
[34] K. Kumar, Y.-F. Hsieh, J.-H. Liao, K.-H. Kao, and Y.-H. Wang, “Significance of multivalley and nonparabolic band structure for gesn tfet simulation,” IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4709–4715, 2018.
[35] G. Grzybowski, R. Beeler, L. Jiang, D. Smith, J. Kouvetakis, and J. Menendez, “Next generation of ge1- y sn y (y= 0.01-0.09) alloys grown on si (100) via ge3h8 and snd4: Reaction kinetics and tunable emission,” Applied physics letters, vol.101, no. 7, p. 072105, 2012.
[36] S. Wang, Q. Wu, J. Zheng, B. Zhang, J. Yao, Q. Zhou, L. Yang, J. Xu, and B. Cheng, “Gesn/gesisn double-heterojunction short channel tunnel field-effect transistor design,” Japanese Journal of Applied Physics, vol. 59, no. 3, p. 034001, 2020.
[37] C. Bera, “Thermo electric properties of nanocomposite materials,” Ph.D. dissertation, Ecole Centrale Paris, 2010.
[38] S. Zaima, O. Nakatsuka, N. Taoka, M. Kurosawa, W. Takeuchi, and M. Sakashita, “Growth and applications of gesn-related group-iv semiconductor materials,” Science and technology of advanced materials, 2015.
[39] Y. Yang, S. Su, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, G. Zhang, C. Xue, B. Cheng et al., “Towards direct band-to-band tunneling in p-channel tunneling field effect transistor (tfet): Technology enablement by germanium-tin (gesn),” in 2012 International Electron Devices Meeting. IEEE, 2012, pp. 16–3.
[40] K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of ge1-xsnx alloys,” Journal of Applied Physics, vol.112, no. 10, p. 103715, 2012.
[41] Y. Shimura, N. Tsutsui, O. Nakatsuka, A. Sakai, and S. Zaima, “Low temperature growth of ge1- xsnx buffer layers for tensile–strained ge layers,” Thin Solid Films, vol. 518, no. 6, pp. S2–S5, 2010.
[42] Y. Yang, X. Tong, L.-T. Yang, P.-F. Guo, L. Fan, and Y.-C. Yeo, “Tunneling fieldeffect transistor: capacitance components and modeling,” IEEE Electron Device Letters, vol. 31, no. 7, pp. 752–754, 2010.
[43] H. B. Bebb and C. Ratliff, “Numerical tabulation of integrals of fermi functions using k lim→· p lim→ density of states,” Journal of Applied Physics, vol. 42, no. 8, pp. 3189–3194, 1971.
[44] C. Shen, L.-T. Yang, G. Samudra, and Y.-C. Yeo, “A new robust non-local algorithm for band-to-band tunneling simulation and its application to tunnel-fet,” Solid-State Electronics, vol. 57, no. 1, pp. 23–30, 2011.
[45] R. Mann and R. Chaujar, “Tcad investigation of ferroelectric based substrate mosfet for digital application,” Silicon, vol. 14, no. 9, pp. 5075–5084, 2022.
[46] S. Sho, S. Odanaka, and A. Hiroki, “A simulation study of short channel effects with a qet model based on fermi–dirac statistics and nonparabolicity for highmobility mosfets,” Journal of Computational Electronics, vol. 15, pp. 76–83, 2016.
[47] A. Chynoweth, W. Feldmann, C. Lee, R. Logan, G. Pearson, and P. Aigrain, “Internal field emission at narrow silicon and germanium p- n junctions,” Physical review, vol. 118, no. 2, p. 425, 1960.
[48] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Soree, W. Magnus, D. Leonelli, G. Groeseneken, and K. De Meyer, “Optimization of gate-on-source-only tunnel fets with counter-doped pockets,” IEEE Transactions on Electron Devices, vol. 59, no. 8, pp. 2070–2077, 2012.
[49] E. Kane, “Zener tunneling in semiconductors,” Journal of Physics and Chemistry of Solids, vol. 12, no. 2, pp. 181–188, 1960.
[50] T. Sentaurus, “user manual, synopsys,” Inc., Mt. View, CA, Version F-2011.09, 2010.
[51] A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, “Tunnel field-effect transistor without gate-drain overlap,” Applied Physics Letters, vol. 91, no. 5, p. 053102, 2007.
[52] J. Knoch, S. Mantl, and J. Appenzeller, “Impact of the dimensionality on the performance of tunneling fets: Bulk versus one-dimensional devices,” Solid-State Electronics, vol. 51, no. 4, pp. 572–578, 2007.
[53] S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, “Gesn technology: Extending the ge electronics roadmap,” in 2011 International Electron Devices Meeting. IEEE, 2011, pp. 16–6.
[54] A. Beckers, F. Jazaeri, and C. Enz, “Cryogenic mosfet threshold voltage model,” in ESSDERC 2019-49th European Solid-State Device Research Conference (ESSDERC). IEEE, 2019, pp. 94–97.
[55] Y. Pratap and J. H. K. Verma, “Temperature dependent performance evaluation and linearity analysis of double gate-all-around (dgaa) mosfet: an advance multigate structure,” Silicon, vol. 12, no. 11, pp. 2619–2626, 2020.
[56] A. Kumar, N. Gupta, and R. Chaujar, “Reliability of sub-20 nm black phosphorus trench (bp-t) mosfet in high-temperature harsh environment,” Silicon, vol. 13, no. 4, pp. 1277–1283, 2021.
[57] A. Van der Ziel, “Thermal noise in field-effect transistors,” Proceedings of the IRE, vol. 50, no. 8, pp. 1808–1812, 1962.
[58] A. Akturk, M. Holloway, S. Potbhare, D. Gundlach, B. Li, N. Goldsman, M. Peckerar, and K. P. Cheung, “Compact and distributed modeling of cryogenic bulk mosfet operation,” IEEE Transactions on Electron Devices, vol. 57, no. 6, pp.1334–1342, 2010.
[59] E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S. Visser, L. Song, and R. M. Incandela, “Cryo-cmos for quantum computing,” in 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016, pp. 13–5.
[60] B. Patra, J. P. Van Dijk, A. Corna, X. Xue, N. Samkharadze, A. Sammak, G. Scappucci, M. Veldhorst, L. M. Vandersypen, M. Babaie et al., “A scalable cryo-cmos 2-to-20ghz digitally intensive controller for 4× 32 frequency multiplexed spin qubits/transmons in 22nm finfet technology for quantum computers,” in 2020 IEEE International Solid-State Circuits Conference, ISSCC 2020. Institute of Electrical and Electronics Engineers (IEEE), 2020, pp. 304–306.
[61] T. Rosca, A. Saeidi, E. Memisevic, L. Wernersson, and A. Ionescu, “An experimental study of heterostructure tunnel fet nanowire arrays: Digital and analog figures of merit from 300k to 10k,” in 2018 IEEE International Electron Devices Meeting (IEDM). IEEE, 2018, pp. 13–5.
[62] K.-H. Kao, T. R. Wu, H.-L. Chen, W.-J. Lee, N.-Y. Chen, W. C.-Y. Ma, C.-J. Su, and Y.-J. Lee, “Subthreshold swing saturation of nanoscale mosfets due to source-to-drain tunneling at cryogenic temperatures,” IEEE Electron Device Letters, vol. 41, no. 9, pp. 1296–1299, 2020.
[63] F. Jazaeri, A. Beckers, A. Tajalli, and J.-M. Sallese, “A review on quantum computing: From qubits to front-end electronics and cryogenic mosfet physics,” in 2019 MIXDES-26th International Conference” Mixed Design of Integrated Circuits and Systems”. IEEE, 2019, pp. 15–25.
[64] H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, and T. Yui, “Highly soluble [1] benzothieno [3, 2-b] benzothiophene (btbt) derivatives for high-performance, solution-processed organic field-effect transistors,” Journal of the American Chemical Society, vol. 129, no. 51, pp. 15 732–15 733, 2007.
[65] K. Vanlalawpuia and B. Bhowmick, “Investigation of a ge-source vertical tfet with delta-doped layer,” IEEE Transactions on Electron Devices, vol. 66, no. 10, pp.4439–4445, 2019.
[66] J. Bizindavyi, A. S. Verhulst, B. Sor´ee, and G. Groeseneken, “Signature of ballistic band-tail tunneling current in tunnel fet,” IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3486–3491, 2020.
[67] S.-Y. Huang et al., “Characterization of short-channel mosfets and tfets at cryogenic temperatures,” 2022.
[68] J. K. Mamidala, R. Vishnoi, and P. Pandey, Tunnel field-effect transistors (TFET): modelling and simulation. John Wiley & Sons, 2016.
[69] B. Duan, X. Yang, J. Lv, and Y. Yang, “Novel sic/si heterojunction power mosfet with breakdown point transfer terminal technology by tcad simulation study,” IEEE Transactions on Electron Devices, vol. 65, no. 8, pp. 3388–3393, 2018.
[70] K. Kumar, C.-H. Lo, C.-C. Chang, T.-L. Wu, K.-H. Kao, and Y.-H. Wang, “Impacts of material parameters on breakdown voltage and location for power mosfets,” Journal of Computational Electronics, vol. 21, no. 5, pp. 1163–1165, 2022.
[71] M. Zhang, J. Wei, X. Zhou, H. Jiang, B. Li, and K. J. Chen, “Simulation study of a power mosfet with built-in channel diode for enhanced reverse recovery performance,” IEEE Electron Device Letters, vol. 40, no. 1, pp. 79–82, 2018.
[72] J. Cheng, H. Huang, B. Yi, W. Zhang, and W. T. Ng, “A tcad study on lateral power mosfet with dual conduction paths and high-k passivation,” IEEE Electron Device Letters, vol. 41, no. 2, pp. 260–263, 2019.