簡易檢索 / 詳目顯示

研究生: 蔡明記
Tsai, Ming-Ji
論文名稱: 應用液相沉積二氧化鈦為閘極介電層於氮化鋁鎵/氮化鎵異質接面場效電晶體之研究
Liquid Phase Deposited Titanium Oxide as the Gate Insulator for AlGaN/GaN Heterostructure Field Effect Transistors
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 71
中文關鍵詞: 液相沉積法異質接面場效電晶體氮化鎵
外文關鍵詞: Heterostructure Field Effect Transistor (HFET), GaN, Liquid Phase Deposition (LPD)
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們致力於研究液相沉積二氧化鈦薄膜於氮化鎵材料上的特性表現。相較於其他沉積系統,液相沉積法具有低成本以及簡易操作的優點,只要將氮化鎵材料晶片浸入調配好的溶液中即可在低溫環境下(30-60℃)沉積一均勻的薄膜,完全不需要額外的電壓或能量。
    在元件應用方面,我們成功利用液相沉積二氧化鈦於氮化鋁鎵/氮化鎵異質接面場效電晶體形成金氧半異質接面場效電晶體。傳統異質接面場效電晶體在最大閘極1 V偏壓下最大汲極電流為334 mA/mm,最大轉導99 mS/mm,逆向崩潰電壓為-49.6 V;金氧半異質接面場效電晶體在最大閘極5 V偏壓下最大汲極電流為760 mA/mm,最大轉導90 mS/mm,逆向崩潰電壓為-147.2 V,此外金氧半結構閘極漏電流可以改善超過5.5萬倍。另外,我們亦藉由比較偏壓應力量測的結果,顯示金氧半結構能藉由降低表面狀態所造成的影響進而抑制電流坍塌現象。

    In this study, we demonstrate that TiO2 film can be deposited on GaN material through liquid phase deposition (LPD). The liquid phase deposition system is advantageously cost effective and simple compared to other deposition systems. A uniform film can be deposited on GaN material only through immersion in a solution at a low temperature (from 30-60℃) without any assisted energy source.
    Here, the liquid-phase AlGaN/GaN HFETs deposited TiO2 as gate insulators were successfully fabricated. The maximum drain current density for the conventional HFETs was at 334 mA/mm, with a maximum VGS of 1 V. The peak extrinsic transconductance was 99 mS/mm, while the breakdown voltage was -49.6 V. On the other hand, the maximum drain current density for the MOS-HFETs with a TiO2 thickness of 50 nm was 760 mA/mm, with a maximum VGS of 5 V. The peak extrinsic transconductance was 90 mS/mm, and the breakdown voltage was -147.2 V. The gate leakage current density was significantly improved by nearly 55,000 times in the MOS-HFET structure, compared with the conventional HFET. Furthermore, the bias stress measurement showed that the MOS-HFET structure can reduce the effect of the surface state and suppress the current collapse.

    English Abstract I Chinese Abstract III Acknowledgements IV Table Captions VII Figure Captions VIII Chapter 1 Introduction …………………...…………………………………………...1 1.1 Background …………………………………………...………………………1 1.2 Organization …………………………….…………...………………………. 4 Chapter 2 Experimental procedures and characterization of TiO2 film ………….…...6 2.1 Liquid phase deposition procedures ……….………………………….............8 2.2 Physical and chemical properties …………………….………………...……10 2.2.1 SEM analysis …………………………………………………………..10 2.2.2 TEM analysis …………………………………………………………..10 2.2.3 AFM analysis …………………………………………………………..11 2.2.4 XPS analysis …………………………………………………...……....12 2.3 Electrical properties ………………………………….………………………12 Chapter 3 Fabrication of the AlGaN/GaN MOS-HFET with liquid phase deposited TiO2 as gate insulator ......…...…..………………………………..……….27 3.1 Device structure ……………………………………………….……………..27 3.2 AlGaN/GaN MOS-HFET with LPD process ………..............................……28 3.3 Summary …………………………………………………………………….30 Chapter 4 Performance of the AlGaN/GaN MOS-HFETs ………...…...............……38 4.1 The experimental results ………………………………………………….....39 4.1.1 The saturated drain current …………………………………………….39 4.1.2 The transconductance ………………………………………………….40 4.1.3 The gate leakage current and breakdown voltage ……………………..41 4.1.4 The current collapse …………………………………………….……..43 4.2 Summary …………………………………………………………………….45 Chapter 5 Conclusions ……………………………………………..……………..…52 5.1 Conclusions ………………………………………………………………….52 5.2 Future works …………………………………………………………….…...52 References …...……………………………................…………….………………...53

    [1]I. Nomura, K. Kishino, and A. Kikuchi, “Theoretical estimation of threshold current of cubic GaInN/GaN/AlGaN quantum well lasers,” Solid-State Electron., vol. 41, pp. 283-286, 1997.
    [2]H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, pp. 1363-1398, 1994.
    [3]M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, pp. 7433-7473, 1996.
    [4]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
    [5]T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, pp. 1481-1483, 1994.
    [6]S. N. Mohammad, A. A. Salvador, and H. Morkoc, “Emerging gallium nitride based devices,” Proceedings of the IEEE, vol. 83, pp. 1306-1355, 1995.
    [7]M. A. Khan, J. N. Kuznia, and D. T. Olson, “Microwave performance of a 0.25μm gate AlGaN/GaN heterostructure field effect transistor,” Appl. Phys. Lett., vol. 65, pp. 1121-1123, 1994.
    [8]Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse, and J. M. Redwing, “High voltage (450 V) GaN schottky rectifiers,” Appl. Phys. Lett., vol. 74, pp. 1266-1268, 1999.
    [9]M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, “Monte Carlo calculation of the velocity-field relationship for gallium nitride,” Appl. Phys. Lett., vol. 26, pp. 625-627, 1975.
    [10]U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of wurtzite GaN,” J. Appl. Phys., vol. 82, pp. 1649-1655, 1997.
    [11]H. Morkoc, R. Cingolani, and B. Gil, “Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors,” Solid-State Electron., vol. 43, pp. 1753-1771, 1999.
    [12]S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III-nitrides: Growth, characterization, and properties,” J. Appl. Phys., vol. 87, pp. 965-1006, 2000.
    [13]S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee, “Fabrication and performance of GaN electronic devices” Mater. Sci. Eng., R. Rep., vol. R30, pp. 55-212, 2000.
    [14]F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 73, pp. 3893-3895, 1998.
    [15]M. Hong, K. A. Anselm, J. Kwo, H. M. Ng, J. N. Baillargeon, A. R. Kortan., J. P. Mannaerts, A. Y. Cho, C. M. Lee, J. I. Chyi, and T. S. Lay, “Properties of Ga2O3(Gd2O3)/GaN metal–insulator–semiconductor diodes,” J. Vac. Sci. Technol. B, vol. 18, pp. 1453-1456, 2000.
    [16]M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Device Lett., vol. 21, pp. 63-65, 2000.
    [17]J. A. Duffy, Bonding Energy Levels and Bands in Inorganic Solids, John Wiley: New York, 1990.
    [18]J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Rep. Prog. Phys., vol. 69, pp. 327-396, 2006.
    [19]Ulrike Diebold, “The surface science of titanium dioxide,” Surface Science Reports, vol. 48, pp. 53-229, 2003.
    [20]H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
    [21]P. Alexandrov, J. Koprinarova, and D. Todorov, “Dielectric properties of TiO2-films reactively sputtered from Ti in an RF magnetron,” Vacuum, vol. 47, p. 1333, 1996.
    [22]B. S. Jeong, J. D. Budai, and D. P. Norton, “Epitaxial stabilization of single crystal anatase films via reactive sputter deposition,” Thin Solid Films, vol. 422, pp. 166-169, 2002.
    [23]Y. Abe and T. Fukuda, “TiO2 thin films formed by electron cyclotron resonance plasma oxidation of Ti thin films,” Jpn. J. Appl. Phys., vol. 32, pp. 1167-1168, 1993.
    [24]V. Mikhelashvili and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” J. Appl. Phys., vol. 89, pp. 3256-3269, 2001.
    [25]H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1988.
    [26]Y. S. Kim, M. Y. Sung, Y. H. Lee, B. K. Ju, and M. H. Oh, “The influence of surface roughness on the electric conduction process in amorphous Ta2O5 thin films,” J. Electrochem. Soc., vol. 146, pp. 3398-3402, 1999.
    [27]P. Madhu Kumar, S. Badrinarayanan, and M. Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, pp. 122-130, 2000.
    [28]D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001.
    [29]A. F. Carley, P. R. Chalker, J. C. Riviere, and M. W. Roberts, “The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra,” J. Chem. Soc. Faraday Trans. 1, vol. 83, pp. 351-370, 1987.
    [30]Y. Gao, Y. Masuda, T. Yonezawa, and K. Kuomoto, “Site-selective deposition and micropatterning of SrTiO3 thin film on self-assembled monolayers by liquid phase deposition method,” Chem. Mater., vol. 14, pp. 5006-5014, 2002.
    [31]L. M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid-State Electron., vol. 5, pp. 285-299, 1962.
    [32]D. K. Schroder, Semiconductor material and device characterization, John Wiley: New York, 1998.
    [33]S. Oyama, T. Hashizume, and H. Hasegawa, “Mechanism of current leakage through metal/n-GaN interfaces,” Applied Surface Science, vol. 190, pp. 322-325, 2002.
    [34]E. J. Miller, X. Z. Dang, and E. T. Yu, “Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors,” J. Appl. Phys., vol. 88, pp. 5951-5958, 2000.
    [35]S. Mizuno, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, “Large gate leakage current in AlGaN/GaN high electron mobility transistors,” Jpn. J. Appl. Phys., vol. 41, pp. 5125-5126, 2002.
    [36]W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and T. Ogura, “Influence of surface defect charge at AlGaN-GaN-HEMT upon Schottky gate leakage current and breakdown voltage,” IEEE Trans. Electron Devices, vol. 52, pp. 159-164, 2005.
    [37]T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, “A study of current collapse in AlGaN/GaN HEMTs induced by bias stress,” IEEE Trans. Electron Devices, vol. 50, pp. 2015-2020, 2003.
    [38]J. A. Mittereder, S. C. Binari, P. B. Klein, J. A. Roussos, D. S. Katzer, D. F. Storm, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Current collapse induced in AlGaN/GaN high-electron-mobility transistors by bias stress,” Appl. Phys. Lett., vol. 83, pp. 1650-1652, 2003.
    [39]T. Hashizume, S. Ootomo, T. Inagaki, and H. Hasegawa, “Surface passivation of GaN or GaN/AlGaN heterostructures by dielectric films and its application to insulated-gate heterostructure transistors,” J. Vac. Sci. Technol. B, vol. 21, pp. 1828-1838, 2003.
    [40]H. Hasegawa, T. Inagaki, S. Ootomo, and T. Hashizume, “Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors,” J. Vac. Sci. Technol. B, vol. 21, pp. 1844-1855, 2003.
    [41]D. W. DiSanto, H. F. Sun, and C. R. Bolognesi, “Ozone passivation of slow transient current collapse in AlGaN/GaN field-effect transistors: The role of threading dislocations and the passivation mechanism,” Appl. Phys. Lett., vol. 88, pp. 013504-1-013504-3, 2006.
    [42]J. Bernat, M. Wolter, P. Javorka, A. Fox, M. Marso, and P. Kordos, “Performance of unpassivated AlGaN/GaN/SiC HEMTs after short-term electrical bias stress,” Solid-State Electron., vol. 48, pp. 1825-1828, 2004.
    [43]H. Kim, R. M. Thompson, V. Tilak, T. R. Prunty, J. R. Shealy, and L. F. Eastman, “Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation,” IEEE Electron Device Lett., vol. 24, pp. 421-423, 2003.
    [44]S. C. Binari, P. B. Klein, and T. E. Kazior, “Trapping effects in GaN and SiC microwave FETs,” Proceedings of the IEEE, vol. 90, pp. 1048-1058, 2002.
    [45]S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. A. Khan, G. Simin, X. Hu, and J. Yang, “Effect of gate leakage current on noise properties of AlGaN/GaN field effect transistors,” J. Appl. Phys., vol. 88, pp. 6726-6730, 2000.
    [46]M. A. Khan, M. S. Shur, Q. C. Chen, and J. N. Kuznia, “Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias,” Electron. Lett., vol. 30, pp. 2175-2176, 1994.
    [47]C. Liu, E. F. Chor, and L. S. Tan, “Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors,” Appl. Phys. Lett., vol. 88, pp. 173504-1-173504-3, 2006.
    [48]P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett., vol. 86, pp. 063501-1-063501-3, 2005.
    [49]P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Electrical characterization of GaN p-n junctions with and without threading dislocations,” Appl. Phys. Lett., vol. 73, pp. 975-977, 1998.
    [50]H. Kim, J. Lee, D. Liu, and W. Lu, “Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing,” Appl. Phys. Lett., vol. 86, pp. 143505-1-143505-3, 2005.
    [51]Y. Ohno, T. Nakao, S. Kishimoto, K. Maezawa, and T. Mizutani, “Effects of surface passivation on breakdown of AlGaN/GaN high-electron-mobility transistors,” Appl. Phys. Lett., vol. 84, pp. 2184-2186, 2004.
    [52]R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, pp. 560-566, 2001.
    [53]X. Hu, A. Koudymov, G. Simin, J. Yang, M. A. Khan, A. Tarakji, M. S. Shur, and R. Gaska, “Si3N4/AlGaN/GaN-metal-insulator-semiconductor heterostructure field-effect transistors,” Appl. Phys. Lett., vol. 79, pp. 2832-2834, 2001.
    [54]B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors,” Appl. Phys. Lett., vol. 80, pp. 1661-1663, 2002.
    [55]K. Kunihiro, K. Kasahara, Y. Takahashi, and Y. Ohno, “Microwave performance of 0.3-μm gate-length multi-finger AlGaN/GaN heterojunction FETs with minimized current collapse,” Jpn. J. Appl. Phys., vol. 39, pp. 2431-2434, 2000.

    下載圖示 校內:2013-08-25公開
    校外:2013-08-25公開
    QR CODE