簡易檢索 / 詳目顯示

研究生: 陳智恆
Chen, Chih-Heng
論文名稱: 明渠亞臨界流經底床突起物之流線分析
Streamline Analysis on the Open Channel Subcritical Flow over a bottom Hump
指導教授: 唐啟釗
Tang, Chii-Jau
共同指導教授: 黃進坤
Huang, Chin-Kun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 112
中文關鍵詞: Von Mises轉換流線座標勢能流明渠臨界條件
外文關鍵詞: Von Mises Transform, streamline system, potential flow, critical flow condition
相關次數: 點閱:131下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 理想二維流場的處理可在任何座標系統上,離散Laplace方程式後求解流函數 。本文建議利用微分幾何的關係,將流線以及某條與 軸的平行線分別轉換至一通用座標系統(ξ,η),經過轉換後的Laplace方程式求解變數即變成流線的位置y(ξ,η)。若指定x=x(ξ),ψ=ψ(η),使用「擴充Von Mises轉換」即能得到(ξ,η)座標系統,因為流線可適當地貼合固體邊壁所以又稱為貼壁流線座標(Boundary-fitted Coordinate)。特定的ξ線( =constant)即代表一條流線,沿此線可反算流線之位置;若給予適當邊界條件與位置,即能由許多 滿足Laplace方程式以獲得內部流線分佈與速度場。

    基於流線座標之特性,可將其應用至穩態明渠流,進而推導出包含垂直速度分量之能量方程式。若忽略黏性,該方程式無論於何種底床形狀,皆能以某流線作為參考位置來求解自由液面;如選擇與底床貼合之流線其 ,藉由底床與水面兩流線間的定值關係,可計算水面位置。

    本文首先以均勻流通過固定鈍體的問題作為模式測試工具,與解析解結果比較可精確分析模式誤差。接著探討明渠亞臨界流通過底床障礙物,其下游為亞臨界流或超臨界流之流況;本文建議以能量方程式的根是否有重根或最小臨界流量作為判定臨界流況之條件,經特殊的疊代程序獲得自由液面位置。得知自由液面後,求解內部流線可迅速獲得詳細的流場資訊,並繪製全域流線分佈與動壓力分佈,使此類明渠問題之分析更完整。

    Ideal 2D flow field can be described by stream function ψ(x,y) as the solution of Laplace’s equation. In this paper, the Extended von Mises transformation is applied to transform the equation from the Cartesian coordinates to the Streamline coordinates (ξ,η)system and solve the vertical coordinates y(ξ,η) along a streamline η(ψ)=constant as x(ξ) and ψ are given. In this system, one obtains the pressure distribution from the Bernoulli equation. For the application to steady open-channel flow, some difficulties may appear when one tries to find the unknown position of the free surface. The complete form of energy equation involving the vertical velocity head is proposed as the free surface dynamic condition here. Last, after the calculation of free-surface elevation for the given locations of inner streamlines, one can re-calculate the locations of inner streamlines iteratively. In this study, to validate the model a uniform flow past an obstacle without the free surface is first calculated in comparison with the corresponding analytical solutions. Next, a steady open-channel flow over a bottom hump is considered when such a flow transits from the subcritical upstream flow to either subcritical or supercritical downstream flow. The detailed numerical investigation is carried out here to determine the location where the critical condition is applied, if a double-root solution of the free surface profile exits in this flow field. The calculated result is discussed and some future study is recommend in this thesis.

    摘要 I 誌謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 符號說明 XIX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-2.1座標轉換 5 1-2.2自由液面形狀 6 1-2.3 Extended Energy Equations 7 1-3 研究動機與目的 12 1-4 論文架構 12 第二章 數學模式 13 2-1控制方程式 13 2-2邊界條件 18 2-2.1上、下游邊界條件 18 2-2.2底床邊界條件 19 2-2.3自由液面邊界條件 19 2-2.4臨界流條件 22 第三章 數值方法 28 3-1控制方程式之離散 28 3-1.1有限差分之概念 28 3-1.2有限差分離散控制方程式 30 3-2自由液面邊界條件之處理 32 3-2.1動力條件 32 3-2.2臨界流條件 33 3-3計算步階之調整 34 3-4帶狀矩陣求解 35 3-5計算流程 38 第四章 結果與討論 40 4-1均勻流經過圓柱測試 40 4-1.1網格與邊界條件建立 41 4-1.2動壓力場分佈 43 4-1.3誤差分析 45 4-1.4網格細化分析 46 4-2均勻流經過鈍體測試 52 4-2.1網格與邊界條件建立 53 4-2.2動壓力場分佈 54 4-2.3誤差分析 54 4-2.4網格細化分析 56 4-3明渠流經底床突起物之亞臨界流 57 4-3.1網格與邊界條件建立 58 4-3.2動力條件收斂分析 59 4-3.3水面線形狀分析 62 4-3.4內部流場分析 70 4-3.5模式應用於梯形堰 75 4-4明渠流經底床突起物之超臨界流 77 4-4.1明渠流計算 78 4-4.2數值實驗-臨界流條件評估 79 4-4.3數值實驗-臨界流條件與動力條件之疊代策略 83 4-4.4多條流線之分析 89 4-4.5內部流場分析及與前人比較 98 第五章 結論與建議 105 5-1結論 105 5-2建議 107 參考文獻 109

    1.張志華(1997)「孤立波與結構物在黏性流體中互制作用之研究」,國立成功大學水利及海洋工程研究所博士論文。

    2.李自強(2004)「孤立波造波之研究」,國立成功大學水利及海洋工程研究所碩士論文。

    3.唐啟釗、陳智恆、黃進坤(2013)「流線座標法應用於二維自由液面勢流場之數值研究」,海洋工程研討會論文集,第35期,pp. 55-59。
    4.Boussinesq J. Essai sur la the’orie des eaux courantes. Me’moriesPre’sente’s par Divers Savants a` l’Acade’mie des Sciences, Paris1877; 23 (1), pp. 1–680.

    5.Castro-Orgaz, O. (2009). “Hydraulics of developing chute flow,” Journal of Hydraulic Research, 47(2), pp. 185–194.

    6.Castro-Orgaz, O. (2010). “Approximate modeling of 2D curvilinear flow in open channels,” Journal of Hydraulic Research, 48(2), pp. 213–224.

    7.Castro-Orgaz, O., Giraldez, J.V., Ayuso, J.L. (2008). “Higher order critical flow condition in curved streamline flow,” Journal of Hydraulic Research, 46(6), pp. 849–853.

    8.Castro-Orgaz, O., Hager W.H. (2009). “Curved streamline transitional flow from mild to steep slopes.” Journal of Hydraulic Research, 47(5), pp. 574–584.

    9.Castro-Orgaz, O. (2010). “Comment on Steady open channel flow with curved streamlines: The Fawer approach revised,” Env. Fluid Mech. 10(3), pp. 297–310.

    10.Castro-Orgaz, O., Juan Vicente Giráldez and Jose Luis Ayuso(2008). “Energy and momentum under critical flow conditions,” Journal of Hydraulic Research, Vol. 46, No. 6 (2008), pp. 844–848.

    11.Castro-Orgaz, O. and Hager W.H. (2013). “Velocity profile approximations for two-dimensional potential open channel flow,” Journal of Hydraulic Research iFirst, (2013), pp. 1–11.

    12.Castro-Orgaz, O. (2013). “Potential Flow Solution for Open-Channel Flow and Weir-Crest Overflow.” Journal of Irrigation and Drainage Engineering, Vol. 139, pp.551-559.

    13.Chow, V.T (1959). Open channel hydraulics, McGraw-Hill, NewYork.

    14.Fawer, C. (1937). Etude de quelques écoulements permanents à filetscourbes [Study of certain steady flows with curved streamlines]. Ph.D. thesis, University of Lausanne. La Concorde, Lausanne, Switzerland (in French).

    15.Fenton, J.D. (1996). “Channel Flow Over Curved Boundaries and a New Hydraulic Theory,” Proceedings of the 10th Congress of APD-IAHR, Langkawi, Malaysia, Vol. 2, pp. 266–273.
    16.Hager, W.H. (1985). “Critical flow condition in open channel hydraulics,” Acta Mechanica, 54(3–4), pp. 157–179.

    17.Hager W.H. and Hutter K. (1984). “Approximate Treatment of Plane Channel Flow,” Acta Mech., 51, pp. 31–48.

    18.Henderson, F.M. (1966). Open channel flow, McMillan, New York.

    19.Jaeger, C. (1956). Engineering fluid mechanics, Blackie and Son, Edinburgh.

    20.Kyner, W.T. (1962). “Steady flows near the critical speed,” Partial support of the office of Naval Research., pp. 517-528.

    21.Matthew, G.D. (1963). “On the influence of curvature, surface tension and viscosity on flow over round-crested weirs,” Proc. ICE 25, pp. 511–524. Discussion (1964) 28, pp. 557–569.

    22.Matthew G.D. (1991). “Higher order one-dimensional equations of potential flow in open channels,” Proc. ICE, 91(3), pp. 187–201.

    23.Montes J.S. (1992). “Potential flow analysis of flow over a curved-broad crested weir,” 11th Australasian Fluid Mechanics Conf. Auckland, pp. 1293–1296.

    24.Montes J.S. (1994). “Potential flow solution to the 2D transition from mild to steep slope.” J. Hydraulic Eng. 120(5), pp. 601–621.

    25.Montes J.S. (1998). “Hydraulics of Open Channel Flow,” ASCE, Reston Va.

    26.Naghdi, P.M. and Vongsarnpigoon, L. (1986). “The downstream flow beyond an obstacle,” J. Fluid Mech., Vol. 162, pp. 223-236.

    27.Barron, R.M. and Hamdan, M.H. (1989). “The double Von Mises transformation in the boundaries: Theory and analysis study of two-phase fluid flow over curved,” International Journal for Numerical Methods in Fluids, Vol. 14, pp. 883-905 (1992)

    28.Barron, R.M. (1989). “Computation of incompressible potential flow using Von Mises Coordinates.” Mathematics and Computers in Simulation , 31 (1989), pp.177-188.

    29.Rouse, H. (1932). “The distribution of hydraulic energy in weir flow in relation to spillway design,” MS Thesis. MIT, Boston.

    30.Sivakumaran, N.S., Tingsanchali T. and Hosking, R.J. (1983). “Steady shallow flow over curved beds,” J. Fluid Mech., Vol. 128, pp. 469-487.

    31.Sivakumaran, N.S. and Yevjevich, V. (1987). “Experimental Verification of the Dressler Curved-flow Equations.” Journal of Hydraulic Research, 25(3), pp. 373–387.

    32.Thom, A., and Apelt, C. (1961). “Field computations in engineering and physics,” Van Nostrand, London.

    33.Yebegaeshet, T. Zerihun and John, D. Fenton(2007). “A Boussinesq-type model for flow over trapezoidal profile weirs.” Journal of Hydraulic Research, Vol. 45, No. 4 (2007), pp. 519–528.

    下載圖示 校內:2019-08-18公開
    校外:2019-08-18公開
    QR CODE