簡易檢索 / 詳目顯示

研究生: 蔡政銓
Tsai, Cheng-Chuan
論文名稱: 模型預測控制於線性馬達驅動平行式雙倒單擺之應用
Application of Model Predictive Control to Parallel-Type Double Inverted Pendulum Driven by a Linear Motor
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 106
中文關鍵詞: 串級控制倒單擺線性馬達模型預測控制平行式雙倒單擺
外文關鍵詞: inverted pendulum, linear motor, parallel-type double inverted pendulum, cascade control, model predictive control
相關次數: 點閱:132下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 平行式雙倒單擺相較於一般傳統的倒單擺,除同樣為非極小相位和不穩定系統外,因單擺長度相異,具不同自然頻率特性,尚須考慮軌道長度限制,在所有倒單擺類型中,控制難度相對較高,且因線性馬達滑軌上摩擦力非均勻分佈,單以狀態回授控制無法達到良好的定位性能。本論文提出一串級控制之架構(Cascade Control),內迴路使用狀態回授穩定系統、外迴路採用模型預測控制(Model Predictive Control)來加強線性馬達之定位控制。除此之外,本研究從機構設計開始,完成平行式雙倒單擺系統的建立並推導出系統之動態模型,提出一平行式雙倒單擺之甩上控制方法,將長短單擺分別甩至上平衡點,最後再利用模型預測控制進行平衡控制與定位控制。模擬與實驗結果和傳統狀態回授控制結果相比,使用模型預測控制能明顯降低定位誤差,克服了使用狀態回授需建立足夠精準摩擦力模型的問題。

    The aim of this paper is to apply Model Predictive Control (MPC) to the Parallel-type Double Inverted Pendulum (PDIP). Control of the PDIP is more difficult among the inverted pendulum family. Because the different lengths of the two pendulums give them distinct natural frequencies and the stoke length is limited. Besides, friction is not homogenously distributed on the track. Please bear in mind that one cannot achieve good performance if only state feedback is used. Therefore, we proposed a cascade structure where the inner loop was formed via state feedback and MPC directed the outer loop to enhance position control of the linear motor. In this work, a positive feedback control combined with energy-based control is adopted to swing up the PDIP sequentially, and then is switched to balance control. From simulation and experimental results, the proposed control scheme was successfully applied to the PDIP. Compared with conventional state feedback control, position errors could be reduced by MPC, which overcome the requirement of precise friction model needed in state feedback applications.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號 IX 第一章 緒論 1 1.1 前言 1 1.2 研究背景與文獻回顧 2 1.2.1 倒單擺文獻回顧 2 1.2.2 模型預測控制文獻回顧 5 1.3 模型預測控制的基本架構與原理 7 1.4 本文架構 10 第二章 平行式雙倒單擺之動態模型 11 2.1 平行式雙倒單擺系統之動位能分析 11 2.2 平行式雙倒單擺之拉格朗日方程與動態模型 13 2.3 非線性狀態空間模型 15 2.3.1 單倒單擺之非線性模型 15 2.3.2 平行式雙倒單擺之非線性模型 16 2.4 非線性模型之線性化 16 2.4.1 單倒單擺狀態空間模型 17 2.4.2 平行式雙倒單擺狀態空間模型 19 第三章 參數估測與控制器設計 22 3.1 參數估測簡介 22 3.1.1 參數估測原理 22 3.1.2 最小平方擬合法 23 3.2 參數模型建立 26 3.2.1 資料估測 27 3.3 甩上控制器-能量控制 29 3.3.1 單倒單擺甩上控制 29 3.3.2 平行式雙倒單擺同時甩上控制 31 3.4 甩上控制器-正回授控制 32 3.5 平衡控制器-狀態回授控制 35 3.6 定位控制器-模型預測控制 38 3.6.1 輸入增量與積分動作 38 3.6.2 預測模型之建立 40 3.6.3 閉迴路算法 44 3.6.4 無拘束模型預測控制 45 3.6.5 拘束模型預測控制 47 3.6.5.1 終端代價函數 50 3.6.5.2 仿代數黎卡提方程 53 3.6.6 模型預測控制實現步驟 54 第四章 模擬與實驗結果 60 4.1 實驗架構與軟硬體簡介 60 4.1.1 軟體部分 62 4.1.2 硬體部分 62 4.2 系統鑑別與驗證 67 4.3 單倒單擺 70 4.3.1 長短桿單倒單擺甩上控制之模擬與實驗 70 4.3.2 長短桿單倒單擺平衡控制之模擬與實驗 76 4.3.3 長短桿單倒單擺定位控制實驗 80 4.4 平行式雙倒單擺 82 4.4.1 平行式雙倒單擺同時甩上之模擬與實驗 82 4.4.2 平行式雙倒單擺分別甩上之模擬與實驗 85 4.4.3 平行式雙倒單擺平衡控制之模擬與實驗 88 4.4.4 平行式雙倒單擺模型預測控制之模擬與實驗 91 4.4.5 平行式雙倒單擺定位控制實驗 94 第五章 結論與建議 99 5.1 結論 99 5.2 建議 100 參考文獻 101 自述 106

    [1] http://www.segway.com/
    [2] http://www.BRP.com/
    [3] K. Furuta, M. Yamakita, S. Kobayashi, and M. Nishimura, “A new inverted pendulum apparatus for education,” IFAC Conference: Advances in Control Education, pp. 191-196, 1991.
    [4] R. J. Wai, J. D. Lee, and L. J. Chang, “Development of adaptive sliding-mode control for nonlinear dual-axis inverted-pendulum system,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 815-820, 2003.
    [5] B. H. Shen, G. L. Hsu, M. C. Tsai, M. F. Hsieh, M. C. Wu, and C. R. Chiang, “Synchronous control of the parallel dual inverted pendulum system driven by linear servomotors,” in Proceedings of International Conference on Mechatronics, pp. 157-161, 2005.
    [6] K. G. Eltohamy and C. Y. Kuo, “Real time stabilisation of a triple link inverted pendulum using single control input,” IEE Proceeding control Theory & Applications, vol. 144, no.5, pp. 498-504, 1997.
    [7] H. X. Li, J. Y. Wang, Y. B. Feng, and Y. D. Gu, “Hardware implementation of the quadruple inverted pendulum with single motor,” Progress in Nature Science, vol. 14, no.9, pp. 822-827, 2004.
    [8] C. W. Anderson, “Learning to control an inverted pendulum using neural networks,” IEEE Control Systems Magazine, vol. 9, no.3, pp. 31-37, 1989.
    [9] G. W. Van Der Linden and P. F. Lambrechts, “H∞ control of an experimental inverted pendulum with dry friction,” IEEE Controls Systems Magazine, vol. 13, no.4, pp. 44-50, 1993.
    [10] K. J. Astrom and K. Furuta, “Swinging up a pendulum by energy control,” Automatica, vol. 36, pp. 287-295, 2000.
    [11] H. O. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of non linear systems: Stability and design issues,” IEEE Transactions on Fuzzy Systems, vol. 4, no.1, pp. 14-23, 1996.
    [12] Y. E. Sun and W. Yong, “Analyses of the multiple rotational inverted pendulum,” in Proceedings of the 5th World Congress on Intelligent Control and Automation, vol. 1, pp. 814-818, 2004.
    [13] M. Gafvert, “Dynamic model based friction compensation on the Furuta pendulum,” in Proceedings IEEE International Conference on Control Applications, vol. 2, pp. 1260-1265, 1999.
    [14] Z. M. Wang, Y. Q. Chen, and N. Fang, “Minimum-time swing-up of a rotary inverted pendulum by iterative impulsive control,” in Proceedings of the 2004 American control conference, pp. 1335-1340, 2004.
    [15] 朱勝任,雙平行倒立單擺系統之控制,碩士論文,國立交通大學控制工程學系,1995年。
    [16] http://ieeexplore.ieee.org/Xplore/dynhome.jsp
    [17] http://www.sciencedirect.com/
    [18] Y. Ito and H. Inooka, “Swinging-up of two pendulums by manual control,” in Proceedings of the 6th IEEE International Workshop on Robot and Human Communication, pp. 266-271, 1997.
    [19] Y. P. Chen, J. L. Chang, and S. R. Chu, “PC-based sliding-mode control applied to parallel-type double inverted pendulum system,” Mechatronics, vol. 9, no. 5, pp. 553-564, 1999.
    [20] J. Q. Yi, N. Yubazaki , and K. Hirota, “Stabilization fuzzy control of parallel-type double inverted pendulum system,” The 9th IEEE International Conference on Fuzzy Systems, vol. 2, pp. 817-822, 2000.
    [21] D. J. Zhang, S. Cong, Z. X. Li, and Z. Q. Qin, “The study of swing up and balance control for rotary parallel inverted-pendulum,” in Proceedings of the 4th World Congress on Intelligent Control and Automation, vol. 3, pp. 2370-2374, 2002.
    [22] J. Q. Yi, N. Yubazaki, and K. Hirota, “A new fuzzy controller for stabilization of parallel-type double inverted pendulum system,” Fuzzy Sets and Systems, vol. 126, no. 1, pp. 105-119, 2002.
    [23] K. H. Lundberg and J. K. Roberge, “Classical dual-inverted-pendulum control,” in Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 5, pp. 4399-4404, 2003.
    [24] C. Ishii, Y. Ishizuka, H. Hashimoto, and S. Yamamoto, “Quasi-optimization of certain parameters for parallel inverted pendulum systems via integrated design of structure/controller”, SICE 2004 Annual Conference, vol. 1, pp. 214-219, 2004.
    [25] Y. Zheng, S. W. Luo, Z. Lv, and L. Wu, “Control parallel double inverted pendulum by hierarchical reinforcement learning,” in Proceedings of the 7th International Conference on Signal Processing, vol. 2, pp. 1614-1617, 2004.
    [26] P. Pakdeepattarakorn, P. Thamvechvitee, J. Songsiri, M. Wongsaisuwan, and D.Banjerdpongchai, “Dynamic models of a rotary double inverted pendulum system,” in Proceedings of the IEEE Region 10 Conference on Analog and Digital Techniques in Electrical Engineering, vol. 4, 2004
    [27] X. Xin and M. Kaneda, “Analysis of the energy-based control for swinging up two pendulums,” IEEE Transactions on Automatic Control, vol. 50, No. 5, pp. 679-684, 2005.
    [28] J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model predictive heuristic control: Applications to industrial processes,” Automatica, vol. 14, no. 5, pp. 413-428, 1978.
    [29] 諸靜,智能預測控制及其應用,浙江大學出版社,浙江,2002年。
    [30] 席裕庚,預測控制,國防工業出版社,北京,1993年。
    [31] R. Rouhani and R. K. Mehra, “Model algorithmic control (MAC); basic theoretical properties,” Automatica, vol. 18, no. 4, pp. 401-414, 1982.
    [32] C. R. Cutler and B .L. Ramaker, “Dynamic matrix control-A computer control algorithm, in Proceedings of the Joint Automatic Control Conference, paper. WP5-B. pp.1-6, 1980.
    [33] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control—Part I. The basic algorithm,” Automatica, vol. 23, no. 2, pp. 137-148, 1987.
    [34] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control—Part II. Extensions and interpretations,” Automatica, vol. 23, no. 2, pp. 149-160, 1987.
    [35] M. A. Lelic and M. B. Zarrop, “Generalized pole-placement self-tuning controller. Part 1. Basic algorithm,” International Journal of Control, vol. 46, no. 2, pp. 547-568, 1987.
    [36] W. H. Kwon and A. Pearson, “A modified quadratic cost problem and feedback stabilization of a linear system,” IEEE Transactions on Automatic Control, vol. 22, no. 5, pp. 838-842, 1977.
    [37] W. H. Kwon and A. Pearson, “On feedback stabilization of time-varying discrete linear systems,” IEEE Transactions on Automatic Control, vol. 23, no. 3, pp. 479-481, 1978.
    [38] W. H. Kwon and D. G. Byun , “Receding horizon tracking control as a predictive control and its stability properties,” International Journal of Control, vol. 50, no. 3, pp. 1807-1824, 1989.
    [39] S. A. Bortoff, “Robust swing-up control for a rotational double pendulum.” in Procedings of the 1996 IFAC World Congress, vol. F, pp. 413-418, 1996.
    [40] J. N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, John Wiley and Sons, USA, pp. 179-180, 2002.
    [41] L. B. Rechard and J. D. Faires, Numerical Analysis, Brooks/Cole, USA, pp. 127-129, 2001.
    [42] L. Ljung, System Identification Theory for the User, Prentice Hall PTR, USA, pp. 208-209, 1999.
    [43] N. R. Draper and H. Smith, Applied Regression Analysis, John Wiley and Sons, New York, 1998.
    [44] C. T. Chen, Linear System Theory and Design, Oxford, New York, 1999.
    [45] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control System Design, Prentice Hall, USA, 2001.
    [46] E. F. Camacho and C. Bordons, Model Predictive Control, Springer, Lodon, 1999.
    [47] J. M. Maciejowski, Predictive Control: with constraints, Prentice Hall, England, 2002.
    [48] J. A. Rossiter, Model-based Predictive Control: A Practical Approach, CRC, USA, 2003.
    [49] K. R. Muske and J. R. Rawlings, “Model predictive control with linear models,” AIChE Journal, vol. 39, no. 2, pp. 262-287, 1993.
    [50] A. Faanes and S. Skogestad, “State space realization of model predictive controllers without active constraints,” Modeling, Identification and Control, vol. 24, no. 4, pp. 231-244, 2003.
    [51] J. A. Rossiter, B. Kouvaritakis, and M. J. Rice, “A numerically robust state-space approach to stable-predictive control strategies,” Automatica, vol. 34, no. 1, pp. 65-73, 1998.
    [52] J. A. Rossiter and B. Kpuvaritakis, “Constrained stable generalized predictive control,” IEE Proceedings-D Control Theory and Applications, vol. 140, no. 4, pp. 243-254, 1993.
    [53] Y. T. Leong, State Space Predictive Control of Inverted Pendulum, M.S. thesis, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 1998.
    [54] D. E. Kirk, Optimal Control Theory: An Introduction, Prentice Hall, USA, 1970.
    [55] R. R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, , New York, 1987.
    [56] Y. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Method in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1993.
    [57] J. B. Rawlings and K. R. Muske, “The stability of constrained receding horizon control,” IEEE Transactions on Automatic Control, vol. 38, no. 10, pp. 1512-1516, 1993.
    [58] W. H. Kwon and S. Han, Receding Horizon Control, Springer, Germany, 2005.
    [59] R. R. Bitmead, M. Gevers, and V. Wertz. Adaptive Optimal Control: The Thinking Man's GPC, Prentice Hall, New York, 1990.
    [60] E. Mosca, Optimal, Predictive, and Adaptive Control, Prentice Hall, USA, 1995,
    [61] M. A. Poubelle, R. R. Bitmead, and M. R. Gevers, “Fake algebraic Riccati techniques and stability,” IEEE Transactions on Automatic Control, vol.33, no.4, pp. 379-381, 1988.
    [62] 洪維恩,MatLab 7 程式設計,旗標出版社,台北,2005年。
    [63] 工業技術研究院機械與系統研究所,PMC32韌體開發技術手冊,工業技術研究院機械與系統研究所,新竹,2001年。
    [64] 惠汝生,自動量測系統-LabVIEW,全華科技,台北,2002年。
    [65] 楊宗誌,C++ Builder 6程式設計實務,文魁資訊,台北,2002年。
    [66] 吳楷聲,電動輪椅差速同動與電動輔助控制之設計與實現,碩士論文,國立成功大學機械工程學系,2005年。
    [67] 尤春風,CATIA V5使用手冊—機械設計篇,知城,台北,2002年。
    [68] YOKOGAWA, LINEARSERV-Instruction Manual, YOKOGAWA, Japan, 1998.
    [69] 蔡政銓, 蔡世茂, 蔡明祺, “線性馬達在交通運輸及產業上的運用”, 機械月刊, 十月號, 第363期, pp. 55-63, 2005.
    [70] http://www.snr-bearings.com/
    [71] http://www.givimisure.com/
    [72] R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of algorithms for velocity estimation from discrete position versus time data,” IEEE Transactions on Industrial Electronics, vol. 39, no.1, pp. 11-19, 1992.

    下載圖示 校內:2007-07-24公開
    校外:2009-07-24公開
    QR CODE