簡易檢索 / 詳目顯示

研究生: 賴韋堯
Lai, Wei-Yao
論文名稱: 透過不同參數優化噴印鋅錫氧化物薄膜電晶體性能
Optimizing the performance of inkjet-printed zinc tin oxide thin film transistors
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 123
中文關鍵詞: 噴印製程鋅錫氧化物(ZTO)薄膜電晶體咖啡環效應載子遷移率
外文關鍵詞: Inkjet-Printing Technique, Zinc Tin Oxide (ZTO), Thin Film Transistor, Coffee Ring Effect, Carrier Mobility
相關次數: 點閱:153下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜電晶體(Thin Film Transistor, TFT)為顯示器內其中一個非常重要的結構,主要用途為電壓開關,調整顯示器內各個畫素的明暗色調大小。隨著技術進步,電視或手機的畫面反應速度要求逐漸提升,也逐漸提高對於電晶體載子遷移率的大小要求;較高的載子遷移率,也能將面板的電極寬度做得更加精細。此外,在製程面而言,噴印製作因使用上靈活、低成本和圖案化簡單,不需額外使用光罩與微影而受到高度重視。然而,噴印製程的主要困難在於液滴擴散控制不易,以及咖啡環效應對於薄膜成型與特性影響。因此本論文針對噴印薄膜電晶體ZTO (鋅錫氧化物;Zinc Tin Oxide)薄膜製程面向進行探討,研究六種不同的噴印參數(包含基板加熱溫度、噴印方向、噴印速度、噴印層數、噴印帶數、噴印間距)對於元件電性的影響,並透過光學顯微鏡(OM)、表面輪廓儀(Profilometer)、穿透式電子顯微鏡(TEM)、掃描電子顯微鏡(SEM)來探究薄膜結構與電性間的關聯解釋,以提升噴印薄膜電晶體電性。
    本研究針對六種不同噴印參數進行探討。第一部分為為基板加熱溫度對電性的影響,總共測試溫度30, 50, 70 oC,噴印帶數均為一帶。其中僅基板加熱溫度70oC的元件擁有TFT電性,載子遷移率為1.93 cm2/V·s,透過TEM與表面輪廓儀分析推測30 oC因為實際薄膜厚度過小(約1.1 nm),導致無正常TFT電性。
    第二部分不同噴印方向(相對於電極長邊指向)對噴印20帶ZTO薄膜電晶體電性的影響,透過ID-VG的量測結果,噴印方向垂直於電極長邊時,所製作之電晶體載子遷移率較高,平均達到2.85 cm2/Vs;而噴印方向平行於電極長邊之電晶體載子遷移率僅0.34cm2/Vs,透過SEM、表面輪廓儀與TEM分析,得知在噴印帶重疊處與咖啡環效應疊加影響後,產生多晶結構,推測其導電性較佳,載子於其內傳輸較容易,而薄層區域的ZTO為非晶型態,推測其導電性較差。當噴印方向平行於電極長邊指向時,因疊層與薄層區域於載子傳輸路徑上形成交替情況,導致載子傳輸不連續,快慢交替,抵銷了重疊層多晶較厚區域載子傳輸較快之優勢,進而導致噴印方向平行所製作的薄膜電晶體載子遷移率較差。
    第三部分為噴印速度對電性的影響探討,總共測試四種噴印速度,分別為10, 20, 30, 40 mm/s,其中噴印速度越快,載子遷移率有提升的趨勢,但影響程度不大。由原本噴印速度10 mm/s的20帶ZTO TFT之載子遷移率4.8 cm2/Vs,上升至噴印速度40 mm/s之ZTO TFT的載子遷移率5.81 cm2/Vs。可能解釋原因為隨噴印速度增加,噴印的ZTO液滴在SiO2所能擴展而不受下一滴影響的時間越短,也因此咖啡環效應影響相對較不明顯,也因此形成更均勻的薄膜,因此噴印速度越大,載子遷移率越好。
    第四部份為噴印層數對電性的影響,對於噴印一帶的ZTO薄膜總共測試噴印層數1、3、5、10層,僅噴印層數一層擁有TFT電性,噴印3層、5層、10層均呈現導通。透過TEM及SEM探究原因為噴印疊層於邊緣咖啡環效應區域形成的多晶及增厚的ZTO結構使薄膜過於導電,進而使電晶體呈現導通狀態。
    第五部份為噴印帶數對電性的影響,共噴印1、3、5、10、20、30、40帶(皆為一層),隨噴印帶數的增加,載子遷移率逐漸提高,由原本噴印1帶的載子遷移率1.94 cm2/Vs上升至噴印20帶5.41cm2/Vs。但當噴印帶的總和長度超出電極的涵蓋範圍(2000 μm)後,載子遷移率無上升趨勢,由噴印20帶之ZTO TFT的載子遷移率為5.17 cm2/Vs,而噴印40條4.9 cm2/Vs,由表面輪廓儀分析結果推論,當噴印帶由1帶上升至20帶時,ZTO薄膜噴印帶重疊區域的厚度隨之提升,且重疊區域的薄膜也由非晶形成多晶型態,因此使載子遷移率有上升趨勢;但隨噴印帶數繼續提高,薄膜噴印帶重疊處薄膜結晶性及厚度變化幾無變化,進而載子遷移率無進一步上升趨勢。另外,為了了解在實際噴印製程應用上,如何以最經濟的方式製作元件,亦即噴印最少帶的鋅錫氧化物主動層,同時又可以得到較佳的電性,因此選擇規劃噴印1, 8, 12, 16帶ZTO薄膜TFT元件,其中噴印12帶的噴印帶的總和長度(1850 μm)接近電極的涵蓋範圍(2000 μm),由實驗結果顯示,噴印12帶ZTO薄膜TFT元件擁有良好的載子遷移率5.22 cm2/Vs,不但比起噴印1帶(2.68 cm2/Vs)及噴印8帶(4.62 cm2/Vs)擁有較佳的載子遷移率,同時在提高噴印帶數至16帶(5.3 cm2/Vs)後,載子遷移率無明顯上升趨勢,因此推測將噴印主動層總和長度剛好接近電極涵蓋範圍,即噴印12帶ZTO薄膜TFT元件便能使噴印ZTO TFT元件擁有最佳的電性。
    第六部分為噴印帶與帶之間的噴印間距對電性的影響,共測試間距dy (y軸方向的間距) = 0, 30, 50, 100, 150, 200, 250, 350 μm,其中載子遷移率隨噴印間距縮小而逐漸增加,以同樣噴印20帶/一層,噴印速度為40 mm/s為例,載子遷移率由dy=250 μm 2.83 cm2/Vs上升到dy=150 μm 5.07cm2/Vs;但當噴印間距再進一步縮減時,dy=100, 50, 30, 0 μm,元件呈現導通狀態,透過材料分析推測原因為間距縮短導致薄膜厚度增加,同時多晶區域也增加,進而導致ZTO薄膜導電性提高。另外,在噴印間距dy = 150, 350 μm 的實驗上,比較了噴印一帶跟噴印五帶但間距dy分別為150和350 μm的條件下,製作出的薄膜電晶體電性比較。結果發現噴印間距對電性影響較大,同樣噴印5帶的情況下,當噴印間距由150 μm (重疊)至噴印間距350 μm (分開)後,載子遷移率由3.76 cm2/Vs下降至2.1 cm2/Vs,下降幅度為1.66;而噴印5條dy=350 μm (分開)的元件與噴印1條的元件電子遷移率較為相近(2.1與1.28 cm2/Vs),推論相對於噴印間距,噴印帶數對於電性影響較小。

    Thin Film Transistors (TFTs) are important structures in monitors and are mainly used as voltage switches to adjust the value and tone of each pixel. With the development of science and technology, the demand in reaction speed for screens of TVs and mobile phones are gradually increasing, and therefore so is the demand in TFT carrier mobility. With higher TFT carrier mobility, the electrode width of panels can be processed more delicately. Also, for the manufacturing process of TFT thin films, inkjet printing is valued highly for its flexibility, low cost, and easy patterning without mask or lithography. Nevertheless, it is the difficulty in controlling the diffusion of drops and how coffee ring effect influences the film shapes and TFTs properties that are the main difficulties for the inkjet-printing process. Therefore, this thesis focuses on the inkjet printing method to manufacture ZTO (Zinc Tin Oxide) thin films TFT, considering the influence of six different printing parameters (Including substrate temperature, printing direction, stage velocity, number of printed layers and stripes, dot interval in y axis (dy)) on ZTO TFTs electrical property and using analytical instruments including OM (Optical Microscope), Profilometer, TEM (Transmission Electron Microscope), SEM (Scanning Electron Microscope) to investigate the relationship between the structure of thin films and electrical property to improve the electrical property of inkjet-printed TFT.
    This study discusses six different parameters. In the first part, the influence of different substrate temperatures on the electrical property of inkjet-printed ZTO TFT was examined including 30, 50, 70 oC with one inkjet-printed stripe. Among these, only devices with substrate temperature 70oC have TFT property with mobility 1.93 cm2/V·s. From TEM and profilometer measurements, the author postulates that it is due to the thickness of inkjet-printed ZTO films with substrate temperature 30oC being too thin (about 1.1 nm) that the devices are prevented from having TFT electrical property.
    Secondly, the influence of different printing directions (relative to the long side of electrode) on the electrical property of inkjet-printed ZTO TFT with 20 printed stripes was examined. ID-VG measurements reveal that TFTs with ZTO printed in perpendicular to the long side of electrode show higher carrier mobility with average 2.85 cm2/ V s while TFTs with ZTO printed in parallel to the long side of electrode average only 0.34 cm2/Vs. SEM, Profilometer and TEM measurements all reveal that the overlapping of printed stripes and coffee ring effect make the film structure change from amorphous to polycrystalline which is postulated to be more conductive and where carrier transports more easily. By contrast, the thin layer region is amorphous and less conductive. When printing direction is parallel to the long side of electrode, the alternate overlapping region and thin layer region make the carrier transport discontinuous, alternate fast and slow and offsets the merit of fast-transporting for carrier in overlapping region, resulting in the lower carrier mobility for TFTs with ZTO printed in parallel to the long side of electrode.
    Thirdly, the influence of stage velocity (including 10, 20, 30, 40 mm/s with 20 printed stripes) on the electrical property was examined. As the stage velocity increases, carrier mobility shows an increasing trend while the trend is unobvious. The mobility increases from 4.8 cm2/Vs with stage velocity 10mm/s to 5.81 cm2/Vs with stage velocity 40mm/s.
    Fourthly, the influence of different printing layers (including 1, 3, 5, 10 layer(s)) on the electrical property of inkjet-printed ZTO TFT was examined. Only devices with one printed layer have TFT property while the others turn on. From TEM and SEM measurements, the author postulates that it is because polycrystalline structure formed due to overlapping of coffee ring effect is more conductive, which makes the TFTs turn on.
    Fifthly, the influence of number of printing stripes (including 1, 3, 5, 10, 20, 30, 40 stripes with one layer) on the electrical property was examined. As the number of printing stripes increases, carrier mobility shows an increasing trend. The mobility increases from 1.94 cm2/Vs with 1 printing stripe to 5.41 cm2/Vs with 20 printing stripes. Nevertheless, when the total length of printed stripes exceeds 2000 μm, carrier mobility shows no further increasing trend from 5.17 cm2/Vs with 20 printed stripes to 4.90 cm2/Vs with 40 printed stripes. From profilometer analyses, the author postulates that the thickness of the overlapping region of printed stripes increases with the increase in the number of printed stripes from 1 to 20. The structure in the overlapping region also changes from amorphous to polycrystalline, which further makes the mobility have an increasing trend. But as the number of printed stripes increases further, the structure and thickness in the overlapping region barely change, which makes the mobility have no increasing trend. Furthermore, in order to realize how to manufacture the devices in the most economical way, that is, manufacturing ZTO TFTs with the least printed stripes while still maintaining great electrical performance, the influence of number of printing stripes (including 1, 8, 12, 16 stripes with one layer) on the electrical property was examined. Among them, the total length of 12 printed stripes is about 1850 μm which is close to that of electrode (2000 μm). Experimental results reveal that ZTO TFT with 12 printed stripes has great carrier mobility (5.22 cm2/Vs) which is not only higher than that of ZTO TFT with 1 (2.68 cm2/Vs) and 8 (4.62 cm2/Vs) printed stripes but also similar to that of ZTO TFT with 16 (5.3 cm2/Vs) printed stripes. Consequently, the author surmises that inkjet-printed ZTO TFTs with printed stripes of which the width is close to that of electrode, namely in this thesis, 12 printed stripes, can have greatest electrical performance.
    Finally, the influence of dot interval y (dy) between each printed stripe (including 0, 30, 50, 100, 150, 200, 250, 350 μm) on the electrical property was examined. As the dot interval decreases, carrier mobility shows an increasing trend. Devices with 20 printed stripes and 40 mm/s stage velocity, for example, the mobility increases from 2.83 cm2/Vs with dy = 250 μm to 5.07 cm2/Vs with dy = 150 μm. Nevertheless, when the dy further decreases to 0, 30, 50, 100 μm, the devices start to turn on. From analytical measurements, the author surmises that it is because decreasing dot interval results in the increase of thickness of thin films and polycrystalline region, which increase the conductivity of thin films. Besides, the experiment for the comparison of the electrical property of inkjet-printed ZTO TFTs with dy = 150, 350 μm and 1, 5 printed stripes is also be conducted. The results reveal that dot interval has a greater effect on the electrical property than the number of printed stripes. With 5 inkjet-printed stripes, when the dot interval increase from 150 μm (overlapping) to 350 μm (separating), the carrier mobility decrease by 1.66 cm2/Vs from 3.76 cm2/Vs to 2.1 cm2/Vs while the carrier mobility for 5 inkjet-printed stripes and dy = 350 μm are similar for 1 inkjet-printed stripe (2.1 and 1.28 cm2/Vs respectively).

    摘要 I Abstract IV 目錄 XIII 表目錄 XV 圖目錄 I 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 理論基礎 4 2-1 薄膜電晶體 4 2-1.1 薄膜電晶體結構 4 2-1.2 薄膜電晶體操作原理 6 2-1.3 薄膜電晶體參數計算 8 2-2 薄膜電晶體製程介紹與文獻回顧 12 2-2.1 濺鍍製程(Sputtering) 13 2-2.2 旋轉塗佈製程(Spin Coating) 16 2-2.3 噴印製程(Inkjet-Printing) 18 2-2.4 噴印ZTO TFT文獻回顧 20 2-3 咖啡環效應介紹(Coffee Ring Effect) 24 2-3.1 咖啡環效應成因 25 2-3.2 咖啡環效應的影響與應用 27 2-3.3 咖啡環效應的消除 31 2-4 影響薄膜電晶體載子遷移率的因素 37 2-4.1 主動層厚度對載子遷移率的影響 37 2-4.2 主動層結晶性與雜質缺陷對載子遷移率的影響 42 第三章 實驗方法與步驟 44 3-1 實驗流程 44 3-2 實驗材料 46 3-3 實驗設備 47 3-3.1噴印機系統 (Inkjet printer) 47 3-3.2電子束蒸鍍系統 (Electron beam evaporation system) 48 3-4 薄膜電晶體(TFT)的製作 49 3-5 分析儀器 51 3-5.1 表面輪廓儀 (Alpha-Step Profilometer) 51 3-5.2 精密半導體參數分析儀 (Precision Semiconductor Parameter Analyzer) 52 3-5.3 掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 53 3-5.4 穿透式電子顯微鏡 (Transmission electron microscopy, TEM) 54 3-5.5 光學顯微鏡 (Optical microscopy, OM) 55 第四章 結果與討論 56 4-1參數介紹 56 4-2 TEM材料分析 64 4-3基板加熱溫度對噴印ZTO薄膜的影響分析 72 4-4噴印方向對噴印ZTO薄膜的影響分析 74 4-5噴印速度對噴印ZTO薄膜的影響分析 78 4-6噴印層數對噴印ZTO薄膜的影響分析 80 4-7噴印帶數對噴印ZTO薄膜的影響分析 87 4-8噴印間距對噴印ZTO薄膜的影響分析 96 4-9噴印間距與噴印帶數對噴印ZTO薄膜綜合影響分析 106 4-10不同元件結構對噴印ZTO TFT的影響分析 109 4-11元件製作之良率、時間及載子遷移率綜論 112 第五章 結論 115 參考資料 118

    [1] Jin Gon Kim, Min Jae Shin, Jae Sup Shin, 'Preparation of Acryl Binder with Silane Type Chain Transfer Agent', Polymer(Korea), vol. 36, pp. 351-356, 2012
    [2] Ji Ma, Xin Ye, Bo Jin, 'Structure and application of polarizer film for thin-film-transistor liquid crystal displays', Displays, vol. 32, pp. 49-57, 2011
    [3] Stuart R. Thomas, Pichaya Pattanasattayavong, Thomas D. Anthopoulos, 'Solution-processable metal oxide semiconductors for thin-film transistor applications', Chemical Society Reviews, vol. 42, pp. 6910-6923, 2013
    [4] John F. Wager, Douglas A. Keszler, Rick E. Presley, Transparent Electronics, 1st ed.; MA : Springer Science Business Media: New York, 2008; Chapter 5, p. 114
    [5] S. R. Thomas, P. Pattanasattayavong, T. D. Anthopoulos,'Solution-processable metal oxide semiconductors for thin-film transistor application', Chemical Society Reviews, vol. 42, pp. 6910–6923, 2013
    [6] Kiyotaka Wasa, Isaku Kanno, Hidetoshi Kotera, Handbook of Sputter Deposition Technology Fundamentals and Applications for Functional Thin Films, Nanomaterials, and MEMS, 2rd ed.; Elsevier Inc: TOKYO, 2012; Chapter 1.3, p. 20
    [7] Kham M. Niang, Junhee Cho, Aditya Sadhanala, William I. Milne, Richard H. Friend, Andrew J. Flewitt, 'Zinc tin oxide thin film transistors produced by a high rate reactive sputtering: Effect of tin composition and annealing temperatures', Physica Status Solidi A-Applications and Materials Science, vol. 214, 1600470, 2017
    [8] Se-Hee Lee, Soon-Gil Yoon, 'Characterization of ZTO Thin Films Transistor Deposited by On-axis Sputtering and Facing Target Sputtering(FTS)', Korean Journal of Materials Research, vol. 26, pp. 676-680, 2016
    [9] K. M. Niang, J. Cho, S. Heffernan, W. I. Milne, and A. J.Flewitt, 'Optimisation of amorphous zinc tin oxide thin film transistors by remote-plasma reactive sputtering', Journal of Applied Physics, vol. 120, 085312, 2016
    [10] Dong-Suk Han, Yu-Jin Kang, Jae-Hyung Park, 'Influence of molybdenum source/drain electrode contact resistance in amorphous zinc-tin-oxide (a-ZTO) thin film transistors', Materials Research Bulletin, vol. 58, pp. 174-177, 2014
    [11] Po-Jui Kuo, Sheng-Po Chang, Shoou-Jinn Chang, 'Investigation of Zinc-Tin-Oxide Thin-Film Transistors with Varying SnO2 Contents', Electronic Materials Letters, vol. 10, pp. 89-94, 2014
    [12] Jaana S. Rajachidambaram, Shail Sanghavi, Ponnusamy Nachimuthu, Vaithiyalingam Shutthanandan, Tamas Varga, Brendan Flynn, Suntharampillai Thevuthasan and Gregory S. Herman, 'Characterization of amorphous zinc tin oxide semiconductors', Journal of Materials Research, vol. 27, pp. 2309-2317, 2012
    [13] M. Fakhri, P. Görrn, T. Weimann, P. Hinze, and T. Riedl, 'Enhanced stability against bias-stress of metal-oxide thin film', Applied Physics Letters, vol. 99, 123503, 2011
    [14] K. Norrman, A. Ghanbari-Siahkali, N. B. Larsen,'6 Studies of spin-coated polymer films', Annual Reports C. The Royal Society of Chemistry, vol. 101, pp. 174-201, 2005
    [15] YunGe Zhang, GenMao Huang, Lian Duan, GuiFang Dong, DeQiang Zhang, Yong Qiu, 'Full-solution-processed high mobility zinc-tin-oxide thin-film-transistors', Science China Technological Sciences, vol. 59, pp. 1407–1412, 2016
    [16] Shiao-Po Tsai, Ching-Hsiang Chang, Chao-Jui Hsu, Ching-Chien Hu, Yu-Tang Tsai, Cheng-Hsu Chou, Hsin-Hung Lin and Chung-Chih Wu, 'High-Performance Solution-Processed ZnSnO TFTs with Tunable Threshold Voltages', Journal of Solid State Science and Technology, vol. 4, pp. 176-180, 2015
    [17] Li-Chih Liu, Jen-Sue Chen, Jiann-Shing Jeng, 'Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors', Applied Physics Letters, vol. 105, 023509, 2014
    [18] CheolGyu Kim, Nam-Hyun Lee, Young-Kyu Kwon, 'Effects of film thickness and Sn concentration on electrical properties of solution-processed zinc tin oxide thin film transistors', Thin Solid Films, vol. 544, pp. 129-133, 2013
    [19] Li-Chih Liu, Jen-Sue Chen, Jiann-Shing Jeng, 'Variation of Oxygen Deficiency in Solution-Processed Ultra-Thin Zinc-Tin Oxide Films to Their Transistor Characteristics', Journal of Solid State Science and Technology, vol. 2, pp. Q59-Q64, 2013
    [20] Youn Goo Kim, Christophe Avis, Jin Jang, 'Low Voltage Driven, Stable Solution-Processed Zinc-Tin-Oxide TFT with HfOy and AlOx Stack Gate Dielectric', Solid State Letters, vol. 1, pp. Q23-Q25, 2012
    [21] Christophe Avis, Jin Jang, 'High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol-gel method', Journal of Materials Chemistry, vol. 21, pp. 10649-10652, 2011
    [22] Chang-Ho Choi, Liang-Yu Lin, Chun-Cheng Cheng, Chih-hung Chang, 'Printed Oxide Thin Film Transistors: A Mini Review', Journal of Solid State Science and Technology, vol. 4, pp. 3044-3051, 2015
    [23] Haitao Gao, He Jia, Benedikt Bierer, Jürgen Wöllenstein, Yan Lu, Stefan Palzer 'Scalable gas sensors fabrication to integrate metal oxide nanoparticles with well-defined shape and size', Sensors and Actuators B: Chemical, vol. 249, pp. 639-646, 2017
    [24] P. Bahoumina, H. Hallil, J.L. Lachaud, A. Abdelghani, K. Frigui, S. Bila, D. Baillargeat, A. Ravichandran, P. Coquet, d, C. Paragua, E. Pichonat, H. Happy, D. Rebière, C. Dejous, 'Microwave flexible gas sensor based on polymer multi wall carbon nanotubes sensitive layer', Sensors and Actuators B: Chemical, vol. 249, pp. 708-714, 2017
    [25] Lisa-Marie Faller, Hubert Zangl, 'Feasibility Considerations on an Inkjet-Printed Capacitive Position Sensor for Electrostatically Actuated Resonant MEMS-Mirror Systems', Journal of Microelectromechanical Systems, vol. 26, pp. 559-568, 2017
    [26] Shih-Yu Tseng, Szu-Ying Li, Shang-Yi Yi, Aileen Y. Sun, Dong-Yu Gao, and Dehui Wan, 'Food Quality Monitor: Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection of Biogenic Amine Odorants', Applied Materials & Interfaces, vol. 9, pp 17306-17316, 2017
    [27] Dong-Hoon Lee, Hee-Sang Cho, Dawoon Han, Rohit Chand, Tae-Jong Yoon and Yong-Sang Kim, 'Highly selective organic transistor biosensor with inkjet printed graphene oxide support system', Journal of Materials Chemistry B, vol. 5, pp. 3580-3585, 2017
    [28] Ting Han, Ye Yuan, Xiao Liang, Yang Zhang, Chuanxi Xiong and Lijie Dong, 'Colloidal stable quantum dots modified by dual functional group polymers for inkjet printing', Journal of Materials Chemistry C, vol. 5, pp. 4629-4635, 2017
    [29] Zhenhua Xing, Jinyong Zhuang, Changting Wei, Dongyu Zhang, Zhongzhi Xie, Xiaoping Xu, Shunjun Ji, Jianxin Tang, Wenming Su, and Zheng Cui, 'Inkjet-Printed Quantum Dot Light-Emitting Diodes with an Air-Stable Hole Transport Material', Applied Materials & Interfaces, vol. 9, pp. 16351-16359, 2017
    [30] Congbiao Jiang, Zhiming Zhong, Baiquan Liu, Zhiwei He, Jianhua Zou, Lei Wang, Jian Wang, JunBiao Peng, and Yong Cao, 'Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light-Emitting Devices', Applied Materials & Interfaces, vol. 8, pp. 26162-26168, 2016
    [31] Jongseok Han, Donghyun Ko, Myeongjin Park, Jeongkyun Roh, Heeyoung Jung, Yeonkyung Lee, Yongwon Kwon, Jiho Sohn, Wan Ki Bae, Byung Doo Chin, Changhee Lee, 'Toward high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation displays', Journal of The Society For Information Display, vol. 24, pp. 545-551, 2016
    [32] Dongjo Kim, Youngmin Jeong, Keunkyu Song, Seong-Kee Park, Guozhong Cao, and Jooho Moon, 'Inkjet-Printed Zinc Tin Oxide Thin-Film Transistor', Langmuir, vol. 25, pp. 11149–11154, 2009
    [33] Yong-Hoon Kim, Kwang-Ho Kim, Min Suk Oh, Hyun Jae Kim, Jeong In Han, Min-Koo Han, Sung Kyu Park, 'Ink-Jet-Printed Zinc–Tin–Oxide Thin-Film Transistors and Circuits With Rapid Thermal Annealing Process', IEEE Electron Device Letters, vol. 31, pp. 836-838, 2010
    [34] Christophe Avisa, Jin Jang, 'High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol–gel method', Jouranl of Materials Chemistry, vol. 21, pp. 10649-10652, 2011
    [35] SH Lee, WS Choi, 'Improved electrical properties of zinc-tin oxide TFTs by inkjet process optimization', Electronic Materials Letters, vol. 10, pp. 737-741, 2014
    [36] Yong Gu Lee and Woon-Seop Choi, 'Electrohydrodynamic jet-printed zinc-tin oxide TFTs and their bias stability', Applied Materials and Interfaces, vol. 6, pp. 11167-11172, 2014
    [37] Benedikt Sykora, Di Wang, and Heinz von Seggern, 'Multiple ink-jet printed zinc tin oxide layers with improved TFT performance', Applied Physics Letters, vol. 109, 033501, 2016
    [38] Hunho Kim, Woon-Seop Choi, 'Controlled Zr doping for inkjet-printed ZTO TFTs', Ceramics International, vol. 43, pp. 4775–4779, 2017
    [39] Hang Huang, Hailong Hu, Jingguang Zhu, Tailiang Guo, 'Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors with Laser Spike Annealing', Journal of Electronic Materials, vol. 46, pp. 4497–4502, 2017
    [40] Ethan B. Secor, Jeremy Smith, Tobin J. Marks, and Mark C. Hersam, 'High-Performance Inkjet-Printed Indium-Gallium-Zinc-Oxide Transistors Enabled by Embedded, Chemically Stable Graphene Electrodes', Applied Materials & Interfaces, vol. 8, pp. 17428-17434, 2016
    [41] Ken Everaerts, Li Zeng, Jonathan W. Hennek, Diana I. Camacho, Deep Jariwala, Michael J. Bedzyk, Mark C. Hersam, and Tobin J. Marks, 'Printed Indium Gallium Zinc Oxide Transistors. Self-Assembled Nanodielectric Effects on Low-Temperature Combustion Growth and Carrier Mobility', Applied Materials & Interfaces, vol. 5, pp. 11884–11893, 2013
    [42] Ye Wang, Xiao Wei Sun, Gregory Kia Liang Goh, Hilmi Volkan Demir, and Hong Yu Yu, 'Influence of Channel Layer Thickness on the Electrical Performances of Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors', Transactions on Electron Devices, vol. 58, pp. 480-485, 2011
    [43] Sang Chul Lim, Ji Young Oh, Jae Bon Koo, Chan Woo Park, Soon-Won Jung, Bock Soon Na, Hye Yong Chu, 'Electrical Properties of Solution-Deposited ZnO Thin-Film Transistors by Low-Temperature Annealing', Journal of Nanoscience and Nanotechnology, vol. 14, pp. 8665-8670, 2014
    [44] M. Mikolajek, A. Friederich, W. Bauer, J. R. Binder, 'Requirements to Ceramic Suspensions for Inkjet Printing', Ceramic Forum International, vol. 92, E25-29, 2015
    [45] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber; S. R. Nagel, T. A. Witten, 'Capillary flow as the cause of ring stains from dried liquid drops', Nature, vol. 389, pp. 827–829, 1997
    [46] A´ lvaro G. Marı´n, Hanneke Gelderblom, Detlef Lohse, Jacco H. Snoeijer, 'Order-to-Disorder Transition in Ring-Shaped Colloidal Stains', Physical Review Letters, vol. 107, 085502, 2011
    [47] Yuzhi Li, Linfeng Lan, Sheng Sun, Zhenguo Lin, Peixiong Gao, Wei Song, Erlong Song, Peng Zhang, and Junbiao Peng, 'All Inkjet-Printed Metal-Oxide Thin-Film Transistor Array with Good Stability and Uniformity Using Surface-Energy Patterns', Applied Materials and Interfaces, vol. 9, pp. 8194-8200, 2017
    [48] Dileep Mampallil, Julien Reboud, Rab Wilson, Douglas Wylie, David R. Klugb, Jonathan M. Cooper, 'Acoustic suppression of the coffee-ring effect', Soft Matter, vol. 11, pp. 7207-7213, 2015
    [49] Peter J. Yunker, Tim Still, Matthew A. Lohr, A. G. Yodh, 'Suppression of the coffee-ring effect by shape-dependent capillary interactions', Nature, vol. 476, pp. 308–311, 2011
    [50] H. B. Eral, D. Mampallil Augustine, M. H. G. Duitsa, F. Mugelea, 'Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting', Soft Matter, vol. 10, pp. 4954-4958, 2011
    [51] Yueh-Feng Li, Yu-Jane Sheng, Heng-Kwong Tsao, 'Evaporation Stains: Suppressing the Coffee-Ring Effect by Contact Angle Hysteresis', Langmuir, vol. 29, pp. 7802-7811, 2013
    [52] Jung Ah Lim, Wi Hyoung Lee, Hwa Sung Lee, Ji Hwang Lee, Yeong Don Park, Kilwon Cho, 'Self-Organization of Ink-jet-Printed Triisopropylsilylethynyl Pentacene via Evaporation-Induced Flows in a Drying Droplet', Advanced Functional Materials, vol. 18, pp. 229–234, 2008
    [53] Dongjo Kim, Sunho Jeong, Bong Kyun Park, and Jooho Moon, 'Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions', Applied Physics Letters, vol. 98, p. 264101, 2006
    [54] Tim Still, Peter J. Yunker, and Arjun G. Yodh, 'Surfactant-Induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops', Langmuir, vol. 28, pp. 4984-4988, 2012
    [55] Yasemin Caglara, Mujdat Caglara, Saliha Ilicana, Seval Aksoya, Fahrettin Yakuphanoglub, 'Effect of channel thickness on the field effect mobility of ZnO-TFT fabricated by sol gel process', Journal of Alloys and Compounds, vol. 621, pp. 189–193, 2015
    [56] Byeong-Yun Oh, Min-Chang Jeong, Moon-Ho Ham and Jae-Min Myoung , 'Effects of the channel thickness on the structural and electrical characteristics of room-temperature fabricated ZnO thin-film transistors', Semiconductor Science and Technology, vol. 22, pp. 608–612, 2007
    [57] J.H. Chung, J.Y. Lee, H.S. Kim, N.W. Jang, J.H. Kim, 'Effect of thickness of ZnO active layer on ZnO-TFT's characteristics', Thin Solid Films, vol. 516, pp. 5597–5601, 2008
    [58] CheolGyu Kim, Nam-Hyun Lee, Young-Kyu Kwon, Bongkoo Kang, 'Effects of film thickness and Sn concentration on electrical properties of solution-processed zinc tin oxide thin film transistors', Thin Solid Films, vol. 544, pp. 129–133, 2013
    [59] John Y. W. Seto, 'The electrical properties of polycrystalline silicon films', Journal of Applied Physics, vol. 46, p. 5247, 1975

    無法下載圖示 校內:2022-08-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE