| 研究生: |
盧靜瑜 Lu, Jing-Yu |
|---|---|
| 論文名稱: |
藉由自體吞噬作用作為生物標的開發高通量奈米毒性篩選斑馬魚胚胎模型 Development of a High-Throughput Nanotoxicity Testing Model Using Autophagy as a Biomarker in Zebrafish |
| 指導教授: |
王應然
Wang, Ying-Jan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 奈米物質 、自體吞噬 、斑馬魚 、高通量 |
| 外文關鍵詞: | nanoparticle, autophagy, zebrafish, high-throughput |
| 相關次數: | 點閱:46 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米物質 (Nanoparticles) 因其本身的成分、大小、型態、溶解度、電位或表面化學鍵結等特性的不同而具有各種物理化學特性,這種的多樣性使得奈米物質展現出有別於塊材的特色,因而大量的被開發及應用於各種領域中,而隨著發展與應用層面擴大,奈米物質將無可避免的被釋放在環境當中,成為潛在的環境風險因子,因此目前迫切需要發展能夠快速且高通量的奈米毒性篩選模式以篩選出更安全的奈米物質。近年有部分文獻探討如何開發建立奈米物質高通量篩選的平台,包含藉由體外測試使用適當的高通量方法來評估細胞損傷反應並預測其在體內的不良結果,在動物或整個生物體中進行研究。過去研究顯示,奈米物質會導致細胞毒性,包含氧化壓力 (Oxidative stress) 以及自體吞噬 (Autophagy) ,而其中自體吞噬作用已被認為是奈米物質誘導毒性的主要機轉之一,研究顯示奈米物質暴露會藉由自體吞噬作用的失衡導致細胞損傷。故本研究旨在藉由斑馬魚胚胎模式建立自體吞噬高通量奈米毒性篩選模式。
首先本研究使用螢光標記之奈米物質,包括奈米銀和奈米金來探討奈米物質主要累積的標的器官,實驗結果顯示奈米銀和奈米金能夠累積於多種器官當中,包含:頭部、腸道、胃與肝臟。並且我們發現奈米物質會導致肝臟損傷或發育受阻,故肝臟是奈米物質毒性的關鍵標的器官。我們進一步使用斑馬魚肝細胞株確認奈米物質會誘發氧化壓力與自體吞噬活性的相關蛋白表達,確認自體吞噬相關蛋白質是適用於做為奈米毒性的生物標記。在奈米物質篩選之斑馬魚胚胎高通量毒性測試策略的暴露條件上,我們發現去離子水相較於標準魚類胚胎培養水而言更能夠保留奈米物質的原始特性,針對胚胎高通量上機部分,經過不同微孔盤測試後,使用 3D 列印製作出的插件並與 96 孔微孔盤配合使用可以達到最佳的胚胎定位與定向,最後考量胚胎特性,使用Image J軟體開發的分析系統進行的數據分析較符合胚胎實驗結果。最後藉由上述建立之奈米物質斑馬魚胚胎高通量毒性測試再次評估適宜胚胎模式的生物標記,結果顯示自體吞噬相關蛋白,包含Microtubule-associated protein 1 light chain 3 (LC3) 與Sequestosome 1 (p62/SQSTM1) 是能夠精準預測奈米物質導致動物死亡的良好生物標記。綜合上述,本研究成功建立一套適用於斑馬魚胚胎檢測奈米物質毒性的高通量篩選策略,自體吞噬相關的生物標記能反應奈米物質導致的毒性,此系統預期能夠在未來應用於奈米物質用途的監管決策和風險評估。
Nanoparticles, with their diverse physicochemical properties—such as variations in composition, size, shape, solubility, charge, and surface chemistry—exhibit unique characteristics distinct from bulk materials, leading to widespread use across various fields. Their environmental release, however, poses potential risks, emphasizing the need for rapid, high-throughput nanotoxicity screening models. This study aims to develop such a model based on autophagy using the zebrafish embryo model. We found that silver and gold nanoparticles accumulate in various organs, notably the liver, causing damage and developmental arrest, thus making the liver a key target for toxicity. Analysis with zebrafish liver cell lines confirmed that nanoparticles induce oxidative stress and autophagy-related protein expression, establishing these proteins as suitable biomarkers. We optimized exposure conditions for high-throughput testing, discovering that deionized water better preserves nanoparticle properties. The use of 3D-printed inserts with 96-well plates achieved optimal embryo positioning. Data analysis with ImageJ software aligned well with experimental results. The established screening system allowed us to re-evaluate biomarkers, confirming that autophagy-related proteins, including LC3 and p62/SQSTM1, are effective for predicting nanoparticle-induced mortality. This study successfully established a set of high-throughput screening strategies suitable for detecting nanoparticle toxicity in zebrafish embryos. The trial results indicate that these biomarkers reflect nanoparticle toxicity to varying degrees, with autophagy showing a particularly high correlation. These strategies can enhance the accuracy and reliability of nanomaterial safety assessments and can be applied in future regulatory decisions and risk assessments for nanoparticle applications.
Andón FT, Fadeel B. 2013. Programmed cell death: Molecular mechanisms and implications for safety assessment of nanomaterials. Acc Chem Res 46:733-742.
Arora S, Jain J, Rajwade JM, Paknikar KM. 2008. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters 179:93-100.
AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279-290.
Barrick A, Châtel A, Bruneau M, Mouneyrac C. 2017. The role of high-throughput screening in ecotoxicology and engineered nanomaterials. Environmental Toxicology and Chemistry 36:1704-1714.
Barua S, Mitragotri S. 2014. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 9:223-243.
Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ, et al. 2010. Silver nanoparticles disrupt gdnf/fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 116:577-589.
Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, et al. 2018. Nanoparticles in the environment: Where do we come from, where do we go to? Environmental Sciences Europe 30:6.
Burić P, Jakšić Ž, Štajner L, Dutour Sikirić M, Jurašin D, Cascio C, et al. 2015. Effect of silver nanoparticles on mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure. Mar Environ Res 111:50-59.
Chang X, Wang X, Li J, Shang M, Niu S, Zhang W, et al. 2021. Silver nanoparticles induced cytotoxicity in ht22 cells through autophagy and apoptosis via pi3k/akt/mtor signaling pathway. Ecotoxicology and Environmental Safety 208:111696.
Chen RJ, Chen YY, Liao MY, Lee YH, Chen ZY, Yan SJ, et al. 2020. The current understanding of autophagy in nanomaterial toxicity and its implementation in safety assessment-related alternative testing strategies. Int J Mol Sci 21.
Chernousova S, Epple M. 2013. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew Chem Int Ed Engl 52:1636-1653.
Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, et al. 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151-159.
Christen V, Capelle M, Fent K. 2013. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish. Toxicology and Applied Pharmacology 272:519-528.
Chu J, Sadler KC. 2009. New school in liver development: Lessons from zebrafish. Hepatology 50:1656-1663.
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. 2005. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325-327.
Cordani M, Sánchez-Álvarez M, Strippoli R, Bazhin AV, Donadelli M. 2019. Sestrins at the interface of ros control and autophagy regulation in health and disease. Oxid Med Cell Longev 2019:1283075.
Damoiseaux R, George S, Li M, Pokhrel S, Ji Z, France B, et al. 2011. No time to lose—high throughput screening to assess nanomaterial safety. Nanoscale 3:1345-1360.
Denton D, Kumar S. 2019. Autophagy-dependent cell death. Cell Death Differ 26:605-616.
Ding C, Wang X, Ma J, Xie M, Dong Q, Liu Q. 2018. Exploration of the bacterial invasion capacity of listeria monocytogenes in zf4 cells. Microb Pathog 124:238-243.
Feng X, Zhang Y, Zhang C, Lai X, Zhang Y, Wu J, et al. 2020. Nanomaterial-mediated autophagy: Coexisting hazard and health benefits in biomedicine. Particle and Fibre Toxicology 17:53.
Ferdous Z, Nemmar A. 2020. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci 21.
Fernandes JP, Mucha AP, Francisco T, Gomes CR, Almeida CMR. 2017. Silver nanoparticles uptake by salt marsh plants - implications for phytoremediation processes and effects in microbial community dynamics. Mar Pollut Bull 119:176-183.
Gaiser BK, Hirn S, Kermanizadeh A, Kanase N, Fytianos K, Wenk A, et al. 2013. Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci 131:537-547.
Gao W, Wang L, Wang K, Sun L, Rao Y, Ma A, et al. 2019. Enhanced anti-inflammatory activity of peptide–gold nanoparticle hybrids upon cigarette smoke extract modification through tlr inhibition and autophagy induction. ACS Applied Materials & Interfaces 11:32706-32719.
Geffroy B, Ladhar C, Cambier S, Treguer-Delapierre M, Brèthes D, Bourdineaud JP. 2012. Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: The role of size, concentration and exposure time. Nanotoxicology 6:144-160.
Gomes SIL, Scott-Fordsmand JJ, Amorim MJB. 2021. Alternative test methods for (nano)materials hazards assessment: Challenges and recommendations for regulatory preparedness. Nano Today 40:101242.
Gressmann A, Beltran Mondragon Y, Bacigalupo D. 2018. Critical review of the relevance and reliability of data sources, methods, parameters and determining factors to produce market studies on manufactured nanomaterials on the eu market.Helsinki, Finland.
Guo C, Yang M, Jing L, Wang J, Yu Y, Li Y, et al. 2016. Amorphous silica nanoparticles trigger vascular endothelial cell injury through apoptosis and autophagy via reactive oxygen species-mediated mapk/bcl-2 and pi3k/akt/mtor signaling. Int J Nanomedicine 11:5257-5276.
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. 2015. Nanoparticle uptake: The phagocyte problem. Nano Today 10:487-510.
Halliwell B, Gutteridge JMC. 2015. Free radicals in biology and medicine:Oxford University Press.
Hanks NA, Caruso JA, Zhang P. 2015. Assessing pistia stratiotes for phytoremediation of silver nanoparticles and ag(i) contaminated waters. J Environ Manage 164:41-45.
Hansen M, Rubinsztein DC, Walker DW. 2018. Autophagy as a promoter of longevity: Insights from model organisms. Nature Reviews Molecular Cell Biology 19:579-593.
Haque E, Ward AC. 2018. Zebrafish as a model to evaluate nanoparticle toxicity. Nanomaterials (Basel) 8.
Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. 2005. In vitro toxicity of nanoparticles in brl 3a rat liver cells. Toxicol In Vitro 19:975-983.
Inglese J, Shamu CE, Guy RK. 2007. Reporting data from high-throughput screening of small-molecule libraries. Nat Chem Biol 3:438-441.
Inshakova E, Inshakov O. 2017. World market for nanomaterials: Structure and trends. MATEC Web Conf 129.
Jang M-H, Kim W-K, Lee S-K, Henry TB, Park J-W. 2014. Uptake, tissue distribution, and depuration of total silver in common carp (cyprinus carpio) after aqueous exposure to silver nanoparticles. Environmental Science & Technology 48:11568-11574.
Jia X, Wang S, Zhou L, Sun L. 2017. The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice. Nanoscale Res Lett 12:478.
Johnson-Lyles DN, Peifley K, Lockett S, Neun BW, Hansen M, Clogston J, et al. 2010. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol 248:249-258.
Johnston HJ, Verdon R, Gillies S, Brown DM, Fernandes TF, Henry TB, et al. 2018. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Crit Rev Toxicol 48:252-271.
Khan FR, Alhewairini SS. 2018. Zebrafish (danio rerio) as a model organism. Current Trends in Cancer Management:3-18.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev Dyn 203:253-310.
Krishnaraj C, Harper SL, Yun SI. 2016. In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult zebrafish (danio rerio). J Hazard Mater 301:480-491.
Kumar AV, Mills J, Lapierre LR. 2022. Selective autophagy receptor p62/sqstm1, a pivotal player in stress and aging. Front Cell Dev Biol 10:793328.
Kumar S, Dwivedi A, Kumar R, Pandey AK. 2015. Preliminary evaluation of biological activities and phytochemical analysis of syngonium podophyllum leaf. National Academy Science Letters 38:143-146.
Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T. 2009. Is the fish embryo toxicity test (fet) with the zebrafish (danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol C Toxicol Pharmacol 149:196-209.
Li N, Xia T, Nel AE. 2008. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689-1699.
Lungu-Mitea S, Oskarsson A, Lundqvist J. 2018. Development of an oxidative stress in vitro assay in zebrafish (danio rerio) cell lines. Sci Rep 8:12380.
Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, et al. 2011. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5:8629-8639.
MacRae CA, Peterson RT. 2015. Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14:721-731.
Maila P. 2006. The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious produc. Malta:European Union Agency for Asylum.
Malakar A, Snow DD. 2020. Chapter 17 - nanoparticles as sources of inorganic water pollutants. In: Inorganic pollutants in water, (Devi P, Singh P, Kansal SK, eds):Elsevier, 337-370.
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. 2021. An overview of the beneficial role of antioxidants in the treatment of nanoparticle-induced toxicities. Oxid Med Cell Longev 2021:7244677.
Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK. 2013. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Research International 2013.
Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, et al. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372-386.
Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622-627.
Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, et al. 2013. Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Accounts of Chemical Research 46:607-621.
Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823-839.
OECD. 2013. Test no. 236: Fish embryo acute toxicity (fet) test.
Peynshaert K, Manshian BB, Joris F, Braeckmans K, De Smedt SC, Demeester J, et al. 2014. Exploiting intrinsic nanoparticle toxicity: The pros and cons of nanoparticle-induced autophagy in biomedical research. Chemical Reviews 114:7581-7609.
Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, et al. 2011. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicology Letters 201:92-100.
Potter PM, Navratilova J, Rogers KR, Al-Abed SR. 2019. Transformation of silver nanoparticle consumer products during simulated usage and disposal. Environmental Science: Nano 6:592-598.
Pulit-Prociak J, Banach M. 2016. Silver nanoparticles – a material of the future…? Open Chemistry 14:76-91.
Qu Y, Lü X. 2009. Aqueous synthesis of gold nanoparticles and their cytotoxicity in human dermal fibroblasts-fetal. Biomed Mater 4:025007.
Quevedo AC, Ellis LA, Lynch I, Valsami-Jones E. 2021a. Mechanisms of silver nanoparticle uptake by embryonic zebrafish cells. Nanomaterials (Basel) 11.
Quevedo AC, Lynch I, Valsami-Jones E. 2021b. Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. Nanoscale 13:6142-6161.
Ramalingam V. 2019. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Advances in Colloid and Interface Science 271:101989.
Redza-Dutordoir M, Averill-Bates DA. 2021. Interactions between reactive oxygen species and autophagy: Special issue: Death mechanisms in cellular homeostasis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1868:119041.
Roduner E. 2006. Size matters: Why nanomaterials are different. Chem Soc Rev 35:583-592.
Roy R, Singh SK, Chauhan LK, Das M, Tripathi A, Dwivedi PD. 2014. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via pi3k/akt/mtor inhibition. Toxicol Lett 227:29-40.
Sabourian P, Yazdani G, Ashraf SS, Frounchi M, Mashayekhan S, Kiani S, et al. 2020. Effect of physico-chemical properties of nanoparticles on their intracellular uptake. Int J Mol Sci 21.
Schmid G, Kreyling WG, Simon U. 2017. Toxic effects and biodistribution of ultrasmall gold nanoparticles. Archives of Toxicology 91:3011-3037.
Stern ST, Johnson DN. 2008. Role for nanomaterial-autophagy interaction in neurodegenerative disease. Autophagy 4:1097-1100.
Stern ST, Adiseshaiah PP, Crist RM. 2012. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20.
Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. 2018. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Research Letters 13:44.
Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, et al. 2009. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9:4924-4932.
Tiwari DK, Jin T, Behari J. 2011. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in wistar rats. Toxicol Mech Methods 21:13-24.
Toprani SM, Bitounis D, Huang Q, Oliveira N, Ng KW, Tay CY, et al. 2021. High-throughput screening platform for nanoparticle-mediated alterations of DNA repair capacity. ACS Nano 15:4728-4746.
Vrček IV, Žuntar I, Petlevski R, Pavičić I, Dutour Sikirić M, Ćurlin M, et al. 2016. Comparison of in vitro toxicity of silver ions and silver nanoparticles on human hepatoma cells. Environ Toxicol 31:679-692.
Wang L, Mercer RR, Rojanasakul Y, Qiu A, Lu Y, Scabilloni JF, et al. 2010. Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts. J Toxicol Environ Health A 73:410-422.
Wittbrodt JN, Liebel U, Gehrig J. 2014. Generation of orientation tools for automated zebrafish screening assays using desktop 3d printing. BMC Biotechnology 14:36.
Wu J, Dang Y, Su W, Liu C, Ma H, Shan Y, et al. 2006. Molecular cloning and characterization of rat lc3a and lc3b--two novel markers of autophagosome. Biochem Biophys Res Commun 339:437-442.
Yang Y, Fan S, Chen Q, Lu Y, Zhu Y, Chen X, et al. 2022. Acute exposure to gold nanoparticles aggravates lipopolysaccharide-induced liver injury by amplifying apoptosis via ros-mediated macrophage-hepatocyte crosstalk. J Nanobiotechnology 20:37.
Yao Y, Zang Y, Qu J, Tang M, Zhang T. 2019. The toxicity of metallic nanoparticles on liver: The subcellular damages, mechanisms, and outcomes. Int J Nanomedicine 14:8787-8804.
Yoo MH, Rah YC, Choi J, Park S, Park HC, Oh KH, et al. 2016. Embryotoxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos. Int J Pediatr Otorhinolaryngol 83:168-174.
Youle RJ, Narendra DP. 2011. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9-14.
Yu N, Li J, Singh PK, Ding D, Sun W, Tang Q, et al. 2019. The superior anticancer effect of reactive oxygen species-responsive paclitaxel nanoparticles is mediated through autophagic cell death. J Biomed Nanotechnol 15:2251-2261.
Zhang X, Yin H, Li Z, Zhang T, Yang Z. 2016. Nano-tio(2) induces autophagy to protect against cell death through antioxidative mechanism in podocytes. Cell Biol Toxicol 32:513-527.
Zhu L, Guo D, Sun L, Huang Z, Zhang X, Ma W, et al. 2017. Activation of autophagy by elevated reactive oxygen species rather than released silver ions promotes cytotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in hematopoietic cells. Nanoscale 9:5489-5498.
Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y. 2008. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:278-284.
校內:2029-08-20公開