| 研究生: |
王瑋 Wang, Wei |
|---|---|
| 論文名稱: |
利用異質接面高分子於光介電泳晶片操控微粒子 Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles |
| 指導教授: |
李國賓
Lee, Gwo-Bin 郭宗枋 Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 異質接面高分子 、光介電泳 、微機電系統 |
| 外文關鍵詞: | optically-induced dielectrophoresis(ODEP), bulk-heterojunction polymer, Micro-Electro-Mechanical System(MEMS) |
| 相關次數: | 點閱:99 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文利用高分子當作為光介電泳晶片的材料,應用在相關的細胞及奈米微珠的操控中,其中研究的主題包含了材料光電轉換機制,晶片製程參數及晶片效能提升。首先,文中以一個嶄新的材料來針對光介電泳晶片製造上的改良,可以利用移動式的光之圖形操控微粒子或細胞。光的主動層個結構是由P3HT/PCBM所構成的異質接面的高分子薄膜。當以一投影機光源照射至單層異質接面結構之材料表面時,此時因為電子施體(Donor)-受體(Acceptor)間之接觸面積較大,當材料吸收光能轉換為激發子(exitcon)後,能有效被分離成電子與電洞(dissociation),在主動層中的電子與電洞將引致不均勻電場來對細胞或微粒子進行操控。用投影機光源之投影圖像在異質接面高分子介電泳晶片,所誘發產生之虛擬電極將可用來對生物體進行操控,同時也針對高分子膜層結構及高分子膜厚對整體效能進行分析及研究研究,當厚度達最大值497nm時(5wt%, 600rpm),最大拖曳速度為202 µm/s,同時,所誘發之DEP力量亦達最大值38.2 pN 。晶片最大效能在操控350分鐘時仍呈現穩定之DEP力量大小。本研究提供一種新型高分子薄膜試片。以往非晶矽基板受限於複雜的製程,現在高分子薄膜晶片不僅成本低且在低溫下具有快速生產的潛質,若配合便宜的塑膠基板或可撓曲式(flexible)基板以取代傳統的玻璃基板,並輔以噴墨壓印技術快速生產,其成本上的絕對優勢使此基板能以可拋棄式的型態使用於生物的應用上。
This paper presents a new material for fabricating optically-induced dielectrophoretic (ODEP) devices, which can manipulate microparticles or cells by using moving light patterns. A thin film of a bulk-heterojunction (BHJ) polymer, a mixture of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester, is used as a light-activated layer. When illuminated by a projected light beam, the photo-induced charge carriers created by the electron transfer of excitons at a donor/acceptor interface in the BHJ layer, disturbs the uniformly-distributed electric field applied on the ODEP devices. A negative DEP force is then generated by virtual electrodes defined by the optical images from a computer-programmable projector to manipulate microparticles, thus providing a flexible platform for particle manipulation. The effect of the polymer thickness and composition on the magnitude of the generated DEP force has been extensively investigated. The maximum particle velocity and the drag force applied on 20 m diameter polystyrene beads are measured to be around 202 m/s and 38.2 pN, respectively, for a device with a 497-nm thick BHJ layer. The lifetime of the developed device is also explored. This BHJ polymer may provide a promising candidate for future ODEP devices capable of nanoparticle and cell manipulation. The amorphous silicon substrate was constrained by its complex manufacture procedure. On the contrary, the polymer thin film chip can be spin-coated at a relatively low temperature for mass production of the ODEP chips. It is also feasible to fabricate the ODEP device on large-area and flexible polymer substrates through a continuous roll-to-roll coating process. Furthermore, the low-cost advantage enables the chips to be disposable in biological applications.
1. H. A. Pohl, Journal of Applied Physics, 29, 1182 (1958).
2. H. A. Pohl, “Dielectrophoresis,” Cambridge University Press, Cambridge (1978).
3. X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Markx, and R. Pethig, Journal of Physics D: Applied Physics, 26, 1278 (1993).
4. J. Voldman, M. Toner, M. L. Gray, and M. A. Schmidt, in proc. of Transducers, 322 (2001).
5. X. B. Wang, Y. Huang, F. F. Becker, P. R. C. Gascoyne, Journal of Physics D: Applied Physics, 27, 1571 (1994).
6. M. P. Hughes, R. Pethig, X. B. Wang, Journal of Physics D: Applied Physics, 28, 474 (1995).
7. A. Ashkin, Physical Review Letters, 24, 156 (1970).
8. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Optics Letters, 11, 288 (1986).
9. P. Y. Chiou, Z. Chang, M. C. Wu, in Proc. IEEE/LEOS International Conference on Optical MEMS and Their Applications, 8 (2003).
10. P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, M. C. Wu, Sensors and Actuators A: physical, 104, 222 (2003).
11. P. Y. Chiou, A. T. Ohta, M. C. Wu, Nature 436, 370 (2005).
12. R. Rong, J. W. Choi, and C. H. Ahn, in Proc. of IEEE 16th International MEMS Conference, 530 (2003).
13. P. Y. Chiou, A. T. Ohta, and M. C. Wu, in Proc. of IEEE/LEOS International Optical MEMS Conference, 83 (2005).
14. A. Jamshidi, P. J. Pauzauskie, A. T. Ohta, P. Y. Chiou, H.Y. Hsu, P. Yang, and M. C. Wu, in Proc. of 20th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Kobe, Japan (2007).
15. Y. H. Lin, G. B. Lee, Biosensors and Bioelectronics, 24, 572 (2008).
16. Y. H. Lin, C. M. Chang, G. B. Lee, in Proc. of Transducer, Denver, USA (2009).
17. Y. H. Lin, G. B. Lee, Applied Physics Letter, 94, 033901, (2009).
18. D. Staebler and C. Wronski, Applied Physics Letter, 31, 292 (1977).
19. A. J. Lewis, G. A. N. Conneil, W. Paul, J.R. Pawlik, Proc.Int. Conf.Tetrally Bouded Amorphous Semicond., American Institute of Physics, New York, 27 (1974).
20. R. Biswas and B. Pan, Applied Physics Letter, 72, 371, (1998).
21. T. Su, P. C. Taylor, G. Ganguly, and D. E. Carlson, Physics Review Letter, 89, 015502 (2002).
22. P. Stradins, Solar Energy Material Solar Cells, 78, 349 (2003).
23. A. M. Nardes, A. M. De Andrade, F. J. Fonseca, E. A. T. Dirani, E. A. T. Dirani, R. Muccillo, and E. N. S. Muccillo, Journal of Materials Science-Materials in Electronics, 14, 407, (2003).
24. H. Shirakawa, E. J. Louis, A.G. MacDiarmid, C. K. Chiang and A. J. Heeger, Journal of Chemical Social Chemistry Communication., 16, 578 (1977).
25. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gua and A. G. MacDiarmid, Physics Review Letter, 39, 1098 (1977).
26. A. J. Heeger, Journal of Physical Chemistry B, 105, 8475 (2001).
27. L. Zuppiroli, M. N. Bussac, S. Paschen, O. Chauvet and L. Forro, Physics Review B, 50, 5196 (1994).
28. C. Moreau, R. Antony, A. Moliton and B. François, Advanced Material and Optical Electronics, 7, 281 (1997).
29. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 258, 1474 (1992).
30. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Applied Physics Letter, 62, 585 (1993).
31. G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789 (1995).
32. G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, Nature Material, 4, 864 (2005).
33. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Advanced Functional Materials, 15, 1617 (2005).
34. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldaufm A. J. Heeger, C. J. Brabec, Advanced Materials, 18, 789 (2006).
35. P. Peumans and S.R. Forrest, Applied Physics Letter, 79, 126 (2001).
36. H. Hoppe, N.S. Sariciftci, Journal of Material Research, 19, 1924 (2004).
37. G. Li, V. Shortriya, Y. Yao and Y. Yang, Journal of Applied Physics, 98, 043704 (2005).
38. V. Shrotriya, Y. Yao, G. Li and Y. Yang, Applied Physics Letter, 89, 063505 (2006).
39. W. Wang, H. B. Wu, C. Y. Yang, C. Luo, Y. Zhang, J. W. Chen and Y. Cao, Applied Physics Letter, 90, 183512 (2007).
40. C. J. Ko, Y. K. Lin and F. C. Chen, Advanced Materials, 19, 3520 (2007).
41. C. J. Ko, Y. K. Lin, F. C. Chen and C. W. Chu, Applied Physics Letter, 90, 063509 (2007).
42. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik and W. J. Feast, Applied Physics Letter, 75, 1679 (1999).
43. G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nature Material, 4, 864 (2005).
44. T. Tiedje, C. R. Wronski, B. Abeles, and J. M. Cebulka, Solar Cells, 2, 301 (1980).
45. F. Padinger, R. S. Rittberger, N. S. Sariciftci, Advanced Functional Materials, 13, 85 (2003).
46. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, Applied Physics Letter, 86, 063502 (2005).
47. N. S. Sariciftci, A. J. Heeger, Handbook of Organic Conductive Molecules and Polymers, JOHN WILEY & SONS, New York (1997).
48. H. Sirringhaus, N. Tessler, R. H. Friend, Science, 280, 1741 (1998)
49. T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, Thin Solid Films, 516, 3138 (2008).
50. V. Dyakonov, Applied Physics A: Material Science Process, 79, 21 (2004).
51. F. Zhu, B. Low, K. Zhang, S. Chua, Applied Physics Letter, 79, 1205 (2001)
52. J. S. Kim, M. GranstrÖm. R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast and F. Cacialli, Jounal of Applied Physics, 84, 6859 (1998).
53. S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung and C. F. Kwong, Applied Physics Letter, 68, 447 (1999).
54. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik and W. J. Feast, Applied Physics Letter, 75, 1679 (1999).
55. L. Sun, S. C. Yang, J. M. Liu, Polymer Preparation, 33, 379 (1992).
56. G. Heywang, F. Jonas, Advanced Materials, 4, 116 (1992).
57. J. L. Billeter and R. A. Pelcovits, Physics Review E, 62, 711 (2000).
58. D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, Nanotechnology, 15, 1317 (2004).