簡易檢索 / 詳目顯示

研究生: 郭文良
Kuo, Wen-Liang
論文名稱: 平面磨削之溫度與熱變形研究
Study of Temperatures and Thermal Deformations in Surface Grinding
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 115
中文關鍵詞: 平面磨削熱變形
外文關鍵詞: surface grinding, thermal deformation
相關次數: 點閱:100下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • i
    摘要
    磨削加工因為適用於各種高硬度鋼材及硬脆陶瓷等難切削材料
    的加工特性,長久以來一直是工程上重要的加工方法之一,並廣泛為工業
    界使用。然而因為磨削加工的複雜性,導致一般技術人員往往僅憑經驗操
    作,這將限制磨削加工的使用範圍。本文即以影響磨削加工精度的工件溫
    升及熱變形研究為主,配合不同的加工條件,探討磨削加工時工件各位置
    的溫度變化及熱變形情形,希望藉此瞭解磨削加工的特性,並提出有效的
    改善方案。
    首先,在本文的研究,可以由磨削區的矩形移動熱源來求解工件各位
    置的暫態溫升。本文的分析從點熱源開始,並運用分離變數法來求解三維
    的熱傳導問題,因為工件的移動速度相當的小,與工件速度有關的對流項
    首先從熱傳導方程式中暫時移除,但工件速度的影響隨後將透過修改點熱
    源滑動方向的座標變換而納入本文模式之中。因此,三維的穩態溫升通解
    可用未知起始條件的函數和溫升的特解乘積的積分式來表示。初始的溫度
    上升可由摩擦所造成的點熱源與Dirac’s Delta 函數的乘積所置換,利用
    Dirac’s Delta 函數的定義,可以得到點熱源的溫升值。這種求解方法被更
    進一步延伸到求解磨削區的均勻移動熱源。本文模式和Jaeger’s 模式[1]
    的理論結果預測及實驗結果比較,顯示本文的模式相當精確,並且通常優
    於Jaeger’s 模式。
    其次,能量分率對於工件溫升及熱變形有相當的影響,然由文獻回顧
    各種模式的能量分率,其分率值範圍相當廣泛。對於氧化鋁磨輪而言,工
    件的能量分率值範圍依實際的加工條件約在10 至90 %之間,這對工件溫
    升及熱變形的預測造成相當的困擾,所以有必要建立新的能量分率理論模
    式,其原理是利用磨削區工件及磨輪接觸面的溫度相等,推導得到的能量
    分率與磨輪及工件兩者之間的熱性質、相對速度、真實接觸面積均有關
    聯,由理論與實驗結果比較,新的理論模式可提供工件溫升及變形較佳的
    預測。
    另外,對於精密磨削問題,因熱變形而造成尺寸誤差,也是吾人特別
    關注的問題,尤其是低熱導係數的鋼工件材料在磨削期間因為熱累積而造
    成的熱變形。本文藉由有限元素法理論來預測工件熱變形,並利用前述所
    建立的溫升理論結合有限元素法,以不同的加工條件,實驗量測磨削加工
    後工件的變形情形,由理論與實驗量測的磨削表面驗證比較,利用本文模
    式可精確有效預測工件的三維熱變形。

    iii
    Abstract
    Grinding processing is especially suitable for the difficult cutting
    materials , such as various kinds of high hardness steel and hard
    brittleness ceramics,etc. It has been one of the important processing
    methods for a long time, and use for the industrial field extensivly. But
    because of the grinding complexity, causing the technical staff to
    operate only according to experience. This will be exercised restraint in
    grinding application. In view of this, the present study is concern about
    the temperature rise and thermal deformation of the workpiece. It is
    hope to understand the characteristic of the grinding process, and
    present the effective improvement scheme.
    First,in the present study, the general solutions for a transient state
    as well as for the temperature rise formed everywhere in the workpiece
    due to a rectangular-shaped moving plane heat source arising at the
    grinding zone are derived. The present analysis starts from a point heat
    source solution by applying the method of separation of variables to a
    three-dimensional heat conduction problem. Because the workpiece
    moving velocity is quite small, the convective term related to the
    workpiece velocity is first excluded from the heat conduction equation.
    This workpiece velocity effect will be included in the model by slightly
    modifying the coordinate variable in the sliding direction shown in the
    iv
    solution of the point heat source. Therefore, the general
    three-dimensional solution of the stationary temperature rise can be
    expressed in an integral form as a function of the product value of the
    unknown initial condition and the particular solution of temperature rise.
    The initial condition of temperature rise can be replaced by the
    point heat source due to frictional that multiplying the product of the
    Dirac delta functions defined for three directions. Using the definition of
    the Dirac delta function, the temperature rise solution for a point heat
    source can thus be obtained. This solution is further extended to obtain
    the moving and uniform heat sources arising in a rectangular grinding
    zone. Comparisons among the experimental result and the theoretical
    results predicted by the present model and Jaeger’s model [1] show
    that the present model is quite accurate and is generally superior to
    Jaeger’s model.
    Secondly, of particular interest is the energy partition of the total
    grinding energy that enters the workpiece, which causes the workpiece
    temperature rise and deformation. A review of the energy partition
    models indicate a wildly ranges. For the aluminum oxide wheels, the
    energy partition to the workpiece typically ranges from 10 to 90 %
    depending on the actual grinding situation. In this paper, a new
    theoretical energy partition model has been built based on the
    temperature of the workpiece surface equal to that of the grinding wheel
    v
    along the grinding zone. The energy partition between two sliding
    bodies depends strongly on the relative magnitude of the thermal
    characteristics, velocity, real contact area of each body. The energy
    partition obtained by theoretical results are compared with those
    obtained experimentally. It was found that the new model provide the
    basis for improved prediction of workpiece temperatures and
    deformations in grinding.
    Thirdly, the geometrical inaccuracy of the workpiece due to thermal
    deformation is of particular concern in precision grinding. Especially,
    steel of low thermal conductivity will deform to become convex during
    grinding due to the accumulated heat in the workpiece, which induced a
    concave surface profile of the workpiece after grinding, called
    over-grinding. Thermal deformation of a workpiece is theoretically
    investigated by means of a finite element method(FEM). The present
    model utilize the temperature rise theory and the finite element theory
    with different processing conditions. Geometrical accuracy of the
    ground surface are investigated both theoretically and experimentally.
    The theoretical results are compared with the measured profiles of
    ground surface. The present model can be applied to predict the
    three-dimensional thermal deformations of the workpiece fairly well.

    vii 目錄 頁次 中文摘要………………………………………………………………………i 英文摘要……………………………………………………………………..iii 誌謝…………………………………………………………………………..vi 目錄………………………………………………………………………….vii 表目錄…………………………………………………………………….…..x 圖目錄……………………………………………………………………..…xi 符號表……………………………………...……………………………….xiv 第一章緒論……………………………………………………….………..1 1-1 前言………………………………………………………….……1 1-2 文獻回顧……………………………………………………….…3 1-3 研究目的及理論分析和實驗內容………………………….……8 第二章基本理論……………………………………………………….….11 2-1 溫升理論分析…………………………………………………...11 2-1-1 靜止點熱源導致材料表面溫升……………..……………...11 2-1-2 移動點熱源導致材料表面溫升……………..………….…..15 2-1-3 移動面熱源導致材料表面溫升……………..……………...17 2-2 能量分率分析……..…………………………….…………..…..20 viii 2-2-1 前言……..………………………………………..………....20 2-2-2 能量分率理論模式...……………………………………….22 2-2-3 能量分率理論模式的建立………………………………….27 2-3 熱變形分析…...……………………………….………………..34 2-3-1 前言…...………………………..…………………….……..34 2-3-2 虛功原理與平衡方程式………..…………………….…….35 第三章實驗方法及步驟…………………………………….……………53 3-1 實驗目的…………………………………………………………53 3-2 磨削實驗進行的前處理及檢測…..……….…………………….53 3-2-1 實驗材料性質…..…………………….……………….…….53 3-2-2 實驗設備….……………………..…….…………………….53 3-3 實驗進行步驟…..…………………….……….……………….….57 3-4 實驗條件…..…………………………….……….……….……….58 3-4-1 6061 鋁合金磨削條件….…………….……….…………….58 3-4-2 SS41 普通碳鋼磨削條件…….……….……….…………….58 第四章結果與討論……………………………………………………….65 4-1 工件材料溫升…..…………………………………….………….65 4-1-1 工件材料表面溫升……………….…...………………...…..65 4-1-2 溫升理論奇異點探……………….………..………………..65 ix 4-1-3 工件內各深度位置溫升………….…………………………66 4-1-4 工件速度對溫升的影響………….…………………………66 4-1-5 工件切深對溫升的影響………………………..…………..67 4-1-6 工件材料對溫升的影響…..…………………….………….67 4-1-7 磨輪材料對溫升的影響…..…………….………………….68 4-2 工件磨削表面探討….……………….………………….……….69 4-2-1 形狀誤差…………………………………….……………....69 4-2-2 影響磨削表面平坦性的因素..……………….……………..69 4-2-3 模型建立……………………………………….………..…..70 4-2-4 邊界條件……………………………………….……………71 4-2-5 磨削表面熱變形計算……………….…………….…….…..73 4-2-6 能量分率對磨削表面熱變形的影響……………………… 74 4-2-7 表面波紋…………………….………………....……………75 4-2-8 形狀誤差…………………….………………....……………76 4-2-9 表面粗糙度………………….………………....……………77 第五章結論…………………………………………………….…..……107 參考文獻…………………………………………………………………...109 自述………………………………………………………………………...115

    109
    參考文獻
    1.Jaeger, J. C., “Moving Sources of Heat and the Temperature at Sliding
    Contacts” ,Proc. Roy. Soc., NSW 76, pp.203-224,1942.
    2.Carslaw, H. S., and Jaeger, J. C., “Conduction of Heat in Solids”, 2nd ed,.
    Oxford University Press, Oxford,1959.
    3.Trigger, K. J., and Chao, B. T., “An Analytical Evaluation of Metal-Cutting
    Temperatures”,Trans. ASME, Vol.73, pp.55-58, 1951.
    4.Chao, B. T., and Trigger, K. J., “Cutting Temperatures and Metal Cutting
    phenomena”,Trans. ASME Vol.73,pp.777-787,1951.
    5.Bowden F. P., and Thoma, P. H., “Surface Temperatures of Sliding Solids”,
    Proc. Roy. Soc., A 223, 29-39,1953.
    6.Barber, J. R., “Distribution of Heat Between Sliding Surfaces”, J. Mech.
    Eng., Sci., Vol.9 ,pp.351-354,1967.
    7.Cameron, A., Gordon, A. N., and Symm, G. T., “Contact Temperatures in
    Rolling/Sliding Surfaces”, Proc. Roy. Soc., pp.45-61,1964.
    8.Gecim, B., and Winer, W. O., “Transient Temperatures in the Vicinity of an
    Asperity contact”, Trans. ASME, J. of Tribology, Vol.107,pp. 333-342,1985.
    9.Ling, F. F., “A Quasi-Iterative Method for Computing Interface Temperature
    Distributions”, Zeitschrift fur Angewandte Mathematik X ,pp.
    461-474,1959.
    10.Ling, F. F., Ng, C. W., “On temperatures at the interfaces of bodies in
    sliding contact”, in : Proc. Of Fourth U. S. N at. Conger. Of Appl. Mech.,
    ASME, New York, Vol.4, pp. 1343-1349,1962.
    11.Ling, F. F., (ed.) “Surface Mechanics”, Wiley/Interscience, New York,1973.
    12.Rosenthal, D., “Theoretical Study of the Heat Cycle during Arc Welding
    (in French)”, in: 2-mem Congres National des Sciences, Brussels, pp.
    1277-1292,1935.
    13.Rosenthal, D., “Mathematical Theory of Heat Distribution during Welding
    110
    and Cutting”, Welding Researach Supplement pp.220s-234s,1941.
    14.D., Rosenthal, Schmerber, R., “Thermal Study of Arc Welding –
    Experimental Verification of Theoretical Formulas”, Welding Research
    Supplement,pp.2-8,1938.
    15.Rowenthal, D., “The Theory of Moving Sources of Heat and Its
    Application to Metal Treatments”, Trans. ASME Vol.80 , pp.849-866,1946.
    16.Blok, H., “Theoretical Study of Temperature Rise at Surfaces of Actual
    Contact under Oiliness Lubricating Conditions”, in: Proc. of the General
    Discussion on Lubrication and Lubricants, Vol.2, Inst. of Mech. Engrs.,
    London, pp.222-235,1937.
    17.Blok, H., “The Dissipation of Frictional Heat”, Appl. Sci. Res., Section
    A5,pp.151-181,1955.
    18.Tian. X., Kennedy Jr, F. E., “Maximum and Average Flash Temperatures in
    Sliding Contact”, Trans. ASME, J. Tribology Vol.116, pp.167-174,1994.
    19.Bos, J., Moes, H., “Frictional Heating of Tribological Contacts”, Trans.
    ASME, J. Tribology Vol.117, pp.171-217,1995.
    20.Hou, Z. B., Komanduri, R., “General Solutions for Stationary/Moving
    Plane Heat Source Problem in Manufacturing and Tribology”, International
    J. Heat and Mass Transfer, Vol.43 ,pp.1679-1698,2000.
    21.Outwater, J. O., and Shaw, M. C., “Surface Temperature in Grinding”,
    Transactions of the ASME, Vol.74, pp.73-86,1952.
    22.Des Ruisseaux, N. R., and Zerkle, R. D., “Thermal Analysis of the
    Grinding Process” ,ASME, Journal of Engineering for Industry, Vol.92,pp.
    428-434,1970.
    23.Malkin, S., “Thermal Aspects of Grinding: Part 2 Surface Temperatures
    and Workpiece Burn”, ASME Journal of Engineering for Industry.
    Vol.96,pp.1184-1191,1974.
    24.Lavine, A. S., “A Simple Model for Convective Cooling during the
    Grinding Process”, ASME, Journal of Engineering for Industry, Vol.110,
    pp. 1-6,1988.
    111
    25.Ramanath, S., and Shaw, M. C., “Abrasive Grain Temperature at the
    Beginning of a cut in Fine Grinding”, ASME Journal of Engineering for
    Industry, Vol.110 , pp.15-18,1988.
    26.Rowe, W. B., Pettit, J. A., Boyle, A., and Moruzzi, J. L., “Avoidance of
    Thermal Damage in Grinding and Prediction of the Damage Threshold”,
    Annals of the CIRP, Vol.37 ,pp. 327-330,1988.
    27.Shaw, M. C., “A Simplified Approach to Workpiece Temperatures in Fine
    Grinding”, Annals of the CIRP, Vol.39, ,pp.345-347,1990.
    28.Sato, K., “Grinding Temperature,” Bull. Japan Society of Grindign
    Engineers, Vol.1,pp. 21-33,1961.
    29.Kato, T., and Fujii, H., “Energy Partition in Conventional Surface
    Grinding”, ASME Journal of Manufacturing Science and Engineering,
    Vol.121,pp. 393-398,1999.
    30.Littman, W. E., and Wulff, J., “The Influence of the Grinding Process on
    the structure of Hardened Steel”, Transaction of ASM, Vol.47,pp.
    692-714,1955.
    31.Takazawa, K., “Effects of Grinding Variables on Surface Structure of
    Hardened Steels”, Bull. Japan Soc. Prec. Engg., Vol.2 ,pp. 14-18,1966.
    32.Saver, W.J., “Thermal Aspect of Surface Grinding”, New Developments in
    Grinding, Proc. International Grinding Conference, Carnegie Press,
    pp.391-411,1972.
    33.Werner, P.G., Younis, M. A., and Schlingensiepen, R., “Creep Feed-An
    Effective Method to Reduced Work Surface Temperature in
    High-Efficiency Grinding Processes”, Proc. 8th North American
    Metalworking Research Conference, pp.312-319,1980.
    34.Beck, J. V., “Thermocouple Temperature Disturbances in Low
    Conductivity Materials”, ASME Journal of Heat Transfer, Vol.84 ,
    pp.124-132,1962.
    35.Attia, M. H., and Kops, L., “Distortion in the Thermal Field around
    Inserted Thermocouples in Experimental Interfacial Studies-Part 3:
    Experimental and Numerical Verification”, ASME Journal of Engineering
    for Industry, Vol.115, pp.444-449,1993.
    112
    36.Ueda, T., Hosokawa, A., and Yamamoto, A., “Measurement of Grinding
    Temperature Using Infrared Radiation Pyrometer with optical Fiber”,
    ASME Journal of Engineering for Industry, Vol.108 ,pp.247-251,1986.
    37.Hebbar, Rajadasa, R., Chandrasekhar, S., and Farris, T. N., “Ceramic
    Grinding Temperatures”, Journal of American Ceramic Society,
    Vol.75,pp.2742-2748,1992.
    38.Kato, T., and Fujii, H.,”PVD Film Method for Measuring the Temperature
    Distribution in Cutting Tools”, ASME Journal of Engineering for Industry,
    Vol.118,pp.117-122,1996.
    39.Kato, T., and Fujii, H., “Temperature Measurement of Workpiece in
    Surface Grinding by PVD Film Method”, ASME, Journal of
    Manufacturing Science and Engineering, Vol.119,pp.689-694, 1997.
    40.Kannappan, S. and Malkin, S., “Effects of Size and Operating Parameters
    on the Mechanics of Grinding”, ASME Journal of Engineering for Industry,
    Vol.94, pp.833-842,1972.
    41.Malkin, S. and Anderson, R. B., “Thermal Aspects of Grinding: Part 1
    Energy Partition”, ASME Journal of Engineering for Industry. Vol.96,
    pp.1177-1183, 1974.
    42.Kohli, S.,Guo, C. and Malkin, S.."Energy Partition to the Workpiece for
    Grinding with Aluminum Oxide and CBN Abrasive Wheels", Trans.
    ASME,Journal of Engineering for Industry . Vol.117,pp.160-168,1995.
    43.Lee, D.G.,Zerkle,R.D. and DesRuisseaux, N.R.,"An Experimental Study of
    the Thermal Aspects of Cylindrical Plunge Grinding", Trans. ASME,
    Journal of Engineering for Industry, Vol.94, pp. 1206,1972.
    44.Shaw, Milton C., "A Production Engineering Approach to Grinding
    Temperatures" , Journal of Mater. Process. Technol., Vol.44,
    pp.159-169,1994.
    45.Hahn, R.S.,"The Relation between Grinding Conditions and Thermal
    Damage in the Workpiece", Trans. ASME. Vol.78, pp.807,1956.
    46.Rowe, W. B., Black, S. C., Mills, B.,Qi, H. S. and Morgan, M. N.,
    “Experimental Investigation of Heat Transfer in Grinding” ,Annals of the
    113
    CIRP, Vol.44,pp.329-332,1995.
    47.Guo, C. and Malkin, S., "Heat Transfer in Grinding", Journal of Materials
    Processing & Manufacturing Science, Vol. I, No. I, pp. 16,1992.
    48.Shaw, Milton C., "Principles of Abrasive Processing" , Oxford,pp.224,1996.
    49.Archard, J.F., "The Temperature of Rubbing Surface", Wear, Vol. 2,
    pp.438,1958.
    50.Bowden, F. P., and Tabor, D.,” The Friction and Lubrication of Solids”,
    Oxford University Press.,Oxford Clarendon Press ,2001, c1954.
    51.Okuyama, S., Nishara, T., and Kauamura, S., “Study on the Grinding
    Condition to prevent the Thermal Displacement of a Work Attracted by
    Magnetic chuck”, Annals of the CIRP, Vol.37 ,pp.259-298,1988.
    52.Nakano, Y., and Ota, K., ”Analysis of Steady-State Thermal Deformation
    of Workpiece During Surface Grinding Operation”,JSPE,
    Vol.41,pp.64-68,1975.
    53. Nakano, Y., and Ota, K., ” Thermal Deformation of Workpieces During
    Surface Grinding and Profile Errors of Finished Workpieces”,JSPE,
    Vol.39,pp.225-229,1973.
    54. Yokoyama, K and Ichimiya, R., “Thermal Deformation of Workpiece in
    Surface Grinding”, JSPE, Vol.42,pp.55-59,1976.
    55.S.Okuyama,T.Nishihara and S.Kawamura,"Study on the Workpiece
    Thermal Deformation under Wet Grinding",Transactions of the ASME
    Journal of Manufacturing Science and Engineering,
    Vol.64,pp.431~436,1993.
    56.Tsai, H.H., and Hocheng, H.,” Prediction of a Thermally Induced Concave
    Ground Surface of The Workpiece in Surface Grinding”, Journal of
    Materials Processing Technology, Vol.122, N 2-3, pp.148-159, 2002.
    57.Matsuo, T., Shibahara, H., Ohbuchi, Y., “Curvature in Surface
    Grinding of Thin Workpiece with Superabrasive Wheels,” Annals of the
    CIRP, Vol.36,pp.231-234, 1987.
    114
    58.E.Brinksmeier,J.T.Cammett,etal.,"ResidualStress Measurement and Causes
    in Machining Process",Annals of the CIRP,Vol.31/2/,pp.491~510, 1982.
    59.Cook,r.d., “Concepts and Applications of Finite Element Analysis”,Hohn
    Wiley & Sons,Inc., pp.93-94,1981.
    60.Zahavi,e., “The Finite Element Method in Machine Design”,
    Prentice-Hall International ed., p.30,1992.
    61.ANSYS Manual,” Element User’s Guied ”, Swanson
    Analysis System, Inc., U.S.A.,1997.

    下載圖示 校內:2005-09-10公開
    校外:2005-09-10公開
    QR CODE