簡易檢索 / 詳目顯示

研究生: 陳逸聖
Chen, Yi-Sheng
論文名稱: 利用三維十字交錯微管道量測相對流阻之研究
A Study of Measuring the Relative Flow Resistance by Using Crossing Microchannels
指導教授: 李定智
Lee, Denz
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 三維交錯微管道相對流阻微混合器
外文關鍵詞: 3-D crossing microchannels, relative flow resistance, micro mixer
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微管道的系統中,並沒有量測相對流阻的方法,如果能知道個別管道元件其相對流阻,在整體管道的配置規劃上將會方便很多,而在三維交錯管道系列的研究中可以知道一事實,即三維交錯管道有著分流的特性,且可以以兩層基本的管道疊合的簡單構型形成,故本研究以三微交錯管道為基礎,探討利用固定深寬比下兩道流體經過交錯窗口後的分流特性,來量測兩道管道的相對流阻。
    本研究以墨水、微粒子、數值模擬三種工具搭配理論分析量測交錯管道的相對流阻,在量測相對流阻前先以簡單十字管道的數據進行校準,以簡單十字管道為基礎,設計基準長度,並假設其長度管道流阻為1,並建立相對流阻量測方法及流程,探討實驗過程中的變數及變數控制,量測的方法及流程確立後再進行管道設計複雜化的相對流阻量測。而在本研究中量測混合器元件與基準長度的相對流阻,探討相對流阻的值可能存在的區間,並對三種量測工具之間的差異、分析方法作探討與比較。

    In microfluid chip system, there is no method for relative flow resistance measurement. If we can find the relative flow resistance of individual pipeline components, the overall of planning the pipeline on the chip will be a lot easier to configure. From the past 3-D crossing microchannels literatures, 3-D crossing microchannels has a shunt characteristics and configuration is simple. In this study, based on the feature of 3-D crossing microchannels with fixed aspect ratio, relative flow resistance of the component channel can be obtained indirectly.
    In this study, we use three kinds of measuring tools to find the relative flow resistance: light intensity of ink, micro particles counting and numerical simulation. Three tools together with theoretical analysis enable the calculation of the relative flow resistance in 3-D crossing microchannels. As a benchmark, we use a simple crossing channel with one arm as the base channel for calibration, and assuming that the base channel has relative flow resistance of 1. Carrying the relative flow resistance measurement procedures, and exploring the possible errors of the process variables. The measurement relative flow resistance of the designated complicated channel can be achieved. In this study, we measure relative flow resistance of the micro mixer relative to the baseline channel, and discuss the range of the resistance value. The pros and cons of the three measurement tools are also discussed.

    摘要 I Abstract II 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒 論 1 1-1前言 1 1-2研究動機 2 1-3研究目的 3 1-4文獻回顧 4 第二章 基礎理論與微管道構型設計 6 2-1 流體在微尺度元件中的流動特性 6 2-2 理論基礎 9 2-1-1流體阻力公式 9 2-1-2轉向率、濃度比例、相對流阻之間關係 13 2-1-3混合指數(Mixing Index) 16 2-3 管道構型設計 17 2-3-1簡單十字管道 17 2-3-2設計複雜化之管道 18 第三章 實驗與模擬系統設定 19 3-1微管道製程 19 3-1-1母模製作 19 3-1-2 PDMS管道製作 25 3-1-3 管道接合 26 3-2實驗系統架構 26 3-2-1實驗設備 26 3-2-2實驗方法 28 3-2-3 墨水光度實驗變數控制 30 3-2-4粒子實驗變數控制 32 3-3模擬系統架構 32 3-4-1統御方程式 33 3-4-2模型與網格建立 34 3-4-3基本假設與模擬條件設定 35 3-4-4 模擬結果後處理 36 第四章 結果與討論 37 4-1相對流阻分析方法及公式 37 4-2簡單十字管道之相對流阻量測 39 4-2-1墨水光度實驗 39 4-2-2粒子實驗 41 4-2-3數值模擬 42 4-3設計複雜化管道之相對流阻量測 43 4-3-1墨水光度實驗 43 4-3-2粒子實驗 44 4-3-3數值模擬 45 4-4流阻量測之誤差 45 4-5流阻量測工具之間差異 47 第五章 結論 51 5-1總結 51 5-2未來工作 52 參考文獻 54 附錄A 網格驗證 95

    1. M. S. Talary, J. P. H. Burt and P. Pethig, “Future trends in diagnosis using laboratory-on-a-chip technologies”, Parasitology, 117, 191-203, 1998.
    2. M. A. Burns, B. N. Johnson, S. N.Brahmasandra, K. Handique, J. R.Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo and D. T. Burke, “AnIntegrated Nanoliter DNA Analysis Device”, Science, 282, 484-487, 1998.
    3. W. Wang, Z. X. Li, R. Luo, S. H. Lu, A. D. Xu and Y. J. Yang, “Droplet-based Micro Oscillating-flowPCR Chip”, Journal of Micromechanics and Microengineering, 15, 1369-1377, 2005.
    4. H. A. Stone, A. D. Stroock and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a Lab-on-a-chip”, Annual Review of Fluid Mechanics, 36, 381-411, 2004.
    5. D. Lee and Y.T. Chen, “Mixing in tangentially crossing micro-channels”, AIChE Journal, 57, 571-580, 2011.
    6. D. Lee and P.H. Lo “On the enhancement of mixing in tangentially crossing micro-channels”, Chemical Engineering Journal, 181-182, 524-529, 2012.
    7. J. P. Brody, P. Yager, R. E. Goldstein and R. H. Austin, “Biotechnology at Low Reynolds Numbers”, Biophysical Journal, 3430-3441, 1996.
    8. 陳佑慈, “三維交錯微管道中流場分析與應用”國立成功大學航空太空工程學系博士論文, 2009.
    9. D. Lee, Y.T. Chen and T.Y. Bai “A study of flows in tangentially crossing micro-channels,” Microfluidics and Nanofluidics, 7(2): p. 169-179, 2009.
    10. 江支佑, “利用交錯微管道調控混合比例之研究”, 國立成功大學航空太空工程研究所碩士論文, 2009.
    11. 吳汴杭, “利用交錯微管道調控濃度比例與混合之研究”, 國立成功大學航空太空工程研究所碩士論文, 2011.
    12. R. F. Ismagilov, D. Rosmarin, P. J. A. Kenis, D. T. Chiu, W. Zhang, H. A. Stone and G. M. Whitesides, “Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch”, Analytical Chemistry, 73, 4682-4687, 2001.
    13. M. Yamada and M. Seki, “Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics”, Lab on a Chip, 5, 1233-1239, 2005.
    14. M. Yamada, T. Hirano, M. Yasudab and M. Seki, “A microfluidic flow distributor generating stepwise concentrations for highthroughput biochemical processing”, Lab on a Chip, 6, 179-184, 2006.
    15. 陳景堯, “利用三維交錯微管道生成油滴與雙重包覆液滴之研究”, 國立成功大學航空太空工程學系碩士論文, 2012.
    16. H. C. Berg and E.M. Purcell, “The physics of chemoreception”, Biophysics, 20, 193-219, 1997.
    17. S. Wereley, “Nano-Bio-Micro fluids tutorial”, Nanotechnology 2004.
    18. O. Reynolds, “An experimentsl investigation of the circumstances which determine whether the motion if water shall be direct or sinuous and the law of resistance in parallel channels”, Philosophical Transactions of the Royal Society of London, 174, 1883.
    19. X. F. Peng, G. P. Peterson and B. X. Wang, “Frictional flow characteristics of water flowing through rextangular microchannel”, Experimental Heat transfer, 7, 249-264, 1994.
    20. Hak, “The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture”, Journal of Fluids Engineering, 121, 5-33, 1999.
    21. P. Wu and W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators”, Cryogenics, 23, 273-277, 1983.
    22. F. M. White, “Viscous Fluid Flow”, 3rd ed McGraw. Hill, New York, 2006.
    23. R.L. Earle and M.D. Earle “Fundamentals of Food Reaction Technology”, Royal Society of Chemistry, United Kingdom, 2003.
    24. P. Garstecki, M. J. Fuerstman, H. A. Stone and G. M. Whitesides, “Formation of Droplets and Bubbles in a Microfluidic T-junction—Scaling and Mechanism of Break-up” , Lab on a Chip, 6, 437-446, 2006.
    25. W. Kern and D.A. Poutinen, “Cleaning Solution Based on Hydrogen Peroxide for Use in Semiconductor Technology”, RCA Review, 187-190, 1970.
    26. G. W. Rubloff, “Defect Microchemistry in SiO2 /Si Structures”, Journal of Vacuum Science & Technology A: Vacuum Surface and Films, 8 ,1857-1863, 1990.
    27. N. LaBianca and J. Delorme, “High aspect ratio resist for thick film application”, Proceedings of SPIE, 2438, 846-852, 1995.
    28. 白庭育, “幾何外型對三維相切微管道流場之影響”, 國立成功大學航空太空工程學系碩士論文, 2007.
    29. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography”, Science, 288, 113-116, 2000.

    無法下載圖示 校內:2016-12-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE