簡易檢索 / 詳目顯示

研究生: 唐品捷
Tang, Pin-Chieh
論文名稱: GRAMD1B在肺癌中癌幹性和癌轉移所扮演之角色
The Role of GRAMD1B in Lung Cancer Stemness and Metastasis
指導教授: 洪澤民
Hong, Tse-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 59
中文關鍵詞: 肺癌GRAMD1B腫瘤幹細胞癌轉移
外文關鍵詞: Lung cancer, GRAMD1B, stemness, metastasis
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺癌是全世界死亡率最高的癌症,因為患者在確診時已處於晚期。高轉移率使其成為最致命的人類癌。因此,了解癌症進展和轉移的分子機制對於改善治療和預後至關重要。膽固醇是細胞膜的重要組成部分,對於多種細胞功能都是必需的。一些研究顯示,高水平的膽固醇與不同類型的癌症的不良預後有關。研究表明GRAMD1B是一種脂質結合蛋白,在癌細胞中已被證實是膽固醇轉運和代謝的調節因子。然而,GRAMD1B在非小細胞肺癌中的角色尚不清楚。在我們的實驗中,我們確定GRAMD1B與肺腫瘤和不良的臨床預後呈正相關。此外,與低轉移的CL1-0細胞相比,GRAMD1B在高轉移的CL1-5肺癌細胞中高度表達。此外,通過功能性實驗,我們發現GRAMD1B在非小細胞肺癌細胞中促進了細胞遷移、細胞的非貼附性生長和癌幹性特性。最後,我們試圖探索由GRAMD1B調節的分子機制,並通過RNAseq的通路富集分析和GRAMD1B過度表達的CL1-0細胞中膽固醇酯的增加,我們發現GRAMD1B可能調節膽固醇平衡。通過ACAT1抑制劑avasimibe抑制膽固醇酯化,可以抑制CL1-5和GRAMD1B過度表達的CL1-0細胞的細胞遷移。結論是這項研究確立了在非小細胞肺癌中,GRAMD1B透過ACAT1和NPC1L1調控膽固醇平衡,促進了肺癌細胞的遷移、非貼附性生長和癌幹性特性。

    Globally, lung cancer is the leading cause of cancer death because of the high rate of metastasis. Thus, understanding the molecular mechanisms underlying cancer progression and metastasis is important to improve the treatment and prognosis. Cholesterol is an essential component of cell membranes and is required for various cellular functions. Several studies have shown that high levels of cholesterol are associated with poor prognosis in various types of cancer. GRAMD1B, a lipid-binding protein, has been identified as a regulator of cholesterol trafficking and metabolism in cancer cells. However, the role of GRAMD1B in non-small cell lung cancer is unknown. In this study, we identified that GRAMD1B was positively correlated with lung tumors and poor clinical outcomes. Moreover, GRAMD1B was highly expressed in high metastatic CL1-5 lung cancer cells, compared to low metastatic CL1-0 cells. Furthermore, by functional assays, we found that GRAMD1B promoted cell migration, anchorage-independent cell growth, and cancer stemness property in NSCLC cells. Finally, we tried to explore the molecular mechanisms regulated by GRAMD1B and found that GRAMD1B may regulate cholesterol homeostasis according to the pathway enrichment analysis of RNAseq results and the increase of cholesterol ester in GRAMD1B-overexpressed CL1-0 cells. Inhibition of the esterification of cholesterol by an ACAT1 inhibitor, avasimibe, suppressed cell migration of CL1-5 and GRAMD1B-overexpressed CL1-0 cells. In conclusion, this study established that GRAMD1B promoted lung cancer cell migration, anchorage-independent growth, and stemness property by regulating cholesterol homeostasis through ACAT1 and NPC1L1 in NSCLC.

    中文摘要 I Abstract II Acknowledgement III Contents V Abbreviations X Introduction 1 Lung cancer 1 Cancer metastasis 1 Cancer stem cells (CSCs) 2 Cholesterol 3 GRAMD1B 4 Rationale and specific aims 6 Materials and methods 7 Cell culture 7 In vitro wound-healing assay 7 Cell proliferation 7 Sphere formation assay 8 Soft-agar colony formation 8 Cholesterol/Cholesterol Ester-GloTM Assay 8 Plasma construction 9 Transfection 9 Lentivirus infection 9 Cellular RNA extraction 10 Quantitative real-time polymerase chain reaction (RT-qPCR) 11 Immunofluorescence by confocal microscopy 11 Western blot analysis 11 Antibodies 12 Statistical analysis 12 Results 13 GRAMD1B expression in lung tumors is correlated with poor clinical outcomes. 13 Overexpression of GRAMD1B promotes cancer cell migration. 14 Knockdown of GRAMD1B inhibits cancer cell migration. 14 GRAMD1B regulates anchorage-independent cell growth in NSCLC cells. 15 GRAMD1B induces cancer stemness in NSCLC. 15 GRAMD1B is correlated to cholesterol homeostasis, lung cancer survival, stemness and metastasis signatures in NSCLC cells. 16 GRAMD1B locates on plasma membrane and endoplasmic reticulum in NSCLC cells and cholesterol induces the accumulation of GRAMD1B, forming the spots in cells. 16 Cholesterol and its metabolite, 27-hydroxycholesterol, affect the cell migration ability in NSCLC cells. 17 Overexpression of GRAMD1B upregulated total cholesterol amount in CL1-0 cells through the increase of cholesterol ester. 17 Avasimibe reduces the cell migration ability in CL1-5 cells and GRAMD1B-overexpressed CL1-0 cells. 18 Ezetimibe reduces the free cholesterol level and the cell migration ability in GRAMD1B-overexpressed CL1-0 and CL1-5 cells. 19 Discussion 20 Conclusions 24 References 25 Figures 30 Figure 1. GRAMD1B expression is positively correlated with malignant pathways in lung tumors. 30 Figure 2. GRAMD1B expression is positively correlated with lung tumors and poor clinical outcome. 31 Figure 3. GRAMD1B is upregulated in highly invasive CL1-5 lung cancer cell line at both of the mRNA and protein levels. 32 Figure 4. Manipulating GRAMD1B expression in CL1-0 and CL1-5 cells. 33 Figure 5. Overexpression of GRAMD1B has no significant effect on NSCLC cell growth. 34 Figure 6. GRAMD1B promotes lung cancer cell migration in vitro. 35 Figure 7. Knockdown of GRAMD1B has no significant effect on NSCLC cell growth. 36 Figure 8. GRAMD1B knockdown decreases lung cancer cell migration in vitro. 37 Figure 9. GRAMD1B overexpression significantly induces anchorage-independent cell growth in CL1-0 cells. 38 Figure 10. GRAMD1B knockdown significantly reduces anchorage-independent cell growth in CL1-5 cells. 39 Figure 11. GRAMD1B overexpression promotes cancer stemness property in CL1-0 cells. 40 Figure 12. GRAMD1B knockdown reduces cancer stemness property in CL1-5 cells. 41 Figure 13. The top 20 enriched pathways by RNA sequencing analysis of GRAMD1B-knockdown CL1-5 cells. 42 Figure 14. RNA sequencing data analysis of GRAMD1B-knockdown CL1-5 cells shows the correlation between GRAMD1B and cholesterol homeostasis, lung cancer survival, stemness, and metastasis. 43 Figure 15. GRAMD1B-knockdown cells show an epithelial phenotype. 44 Figure 16. GRAMD1B locates on plasma membrane and ER. 45 Figure 17. Cholesterol treatment increases the number of GRAMD1B fluorescence spots in GRAMD1B- overexpressed CL1-0 cells. 46 Figure 18. Cholesterol promotes the CL1-0 cell migration. 47 Figure 19. Cholesterol promotes the CL1-5 cell migration. 48 Figure 20. 27-Hydroxycholesterol does not affect the CL1-0 cell motility. 49 Figure 21. 27-Hydroxycholesterol promotes the CL1-5 cell motility. 50 Figure 22. The levels of total cholesterol, free cholesterol and cholesterol ester in CL1-0 cells with GRAMD1B overexpression or combined with avasimibe treatment. 51 Figure 23. Effect of avasimibe on cholesterol levels in CL1-5 cells. 53 Figure 25. Avasimibe inhibits the CL1-5 cell motility. 55 Figure 26. Ezetimibe decreases the levels of total and free cholesterol in GRAMD1B-overexpressed CL1-0 cells. 56 Figure 27. Ezetimibe decreases the levels of total and free cholesterol in CL1-5 cells. 57 Figure 29. Ezetimibe inhibits the CL1-5 cell motility. 59

    Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J Clin 72, 7-33 (2022). https://doi.org:10.3322/caac.21708
    2 Zappa, C. & Mousa, S. A. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 5, 288-300 (2016). https://doi.org:10.21037/tlcr.2016.06.07
    3 Crino, L., Weder, W., van Meerbeeck, J., Felip, E. & Group, E. G. W. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21 Suppl 5, v103-115 (2010). https://doi.org:10.1093/annonc/mdq207
    4 Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13, 714-726 (2013). https://doi.org:10.1038/nrc3599
    5 Maishi, N. & Hida, K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci 108, 1921-1926 (2017). https://doi.org:10.1111/cas.13336
    6 Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105-111 (2001). https://doi.org:10.1038/35102167
    7 Yang, L. et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 5, 8 (2020). https://doi.org:10.1038/s41392-020-0110-5
    8 Pattabiraman, D. R. & Weinberg, R. A. Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 13, 497-512 (2014). https://doi.org:10.1038/nrd4253
    9 Huang, T. et al. Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics 10, 8721-8743 (2020). https://doi.org:10.7150/thno.41648
    10 Visvader, J. E. & Lindeman, G. J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10, 717-728 (2012). https://doi.org:10.1016/j.stem.2012.05.007
    11 Wolf, G. The discovery of vitamin D: the contribution of Adolf Windaus. J Nutr 134, 1299-1302 (2004). https://doi.org:10.1093/jn/134.6.1299
    12 King, R. J., Singh, P. K. & Mehla, K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol 43, 78-92 (2022). https://doi.org:10.1016/j.it.2021.11.007
    13 Luo, J., Yang, H. & Song, B. L. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 21, 225-245 (2020). https://doi.org:10.1038/s41580-019-0190-7
    14 Duan, Y. et al. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 7, 265 (2022). https://doi.org:10.1038/s41392-022-01125-5
    15 Wong, C. C. et al. The cholesterol uptake regulator PCSK9 promotes and is a therapeutic target in APC/KRAS-mutant colorectal cancer. Nat Commun 13, 3971 (2022). https://doi.org:10.1038/s41467-022-31663-z
    16 Guillaumond, F. et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A 112, 2473-2478 (2015). https://doi.org:10.1073/pnas.1421601112
    17 Ediriweera, M. K. Use of cholesterol metabolism for anti-cancer strategies. Drug Discov Today 27, 103347 (2022). https://doi.org:10.1016/j.drudis.2022.103347
    18 Mayengbam, S. S., Singh, A., Pillai, A. D. & Bhat, M. K. Influence of cholesterol on cancer progression and therapy. Transl Oncol 14, 101043 (2021). https://doi.org:10.1016/j.tranon.2021.101043
    19 Mamtani, R. et al. Disentangling the Association between Statins, Cholesterol, and Colorectal Cancer: A Nested Case-Control Study. PLoS Med 13, e1002007 (2016). https://doi.org:10.1371/journal.pmed.1002007
    20 Hoglinger, D. et al. NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat Commun 10, 4276 (2019). https://doi.org:10.1038/s41467-019-12152-2
    21 Jiang, S. Y., Ramamoorthy, R. & Ramachandran, S. Comparative transcriptional profiling and evolutionary analysis of the GRAM domain family in eukaryotes. Dev Biol 314, 418-432 (2008). https://doi.org:10.1016/j.ydbio.2007.11.031
    22 Wu, S. Y. et al. 2'-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity. Nat Commun 5, 3459 (2014). https://doi.org:10.1038/ncomms4459
    23 Khanna, P. et al. GRAM domain-containing protein 1B (GRAMD1B), a novel component of the JAK/STAT signaling pathway, functions in gastric carcinogenesis. Oncotarget 8, 115370-115383 (2017). https://doi.org:10.18632/oncotarget.23265
    24 Khanna, P., Lee, J. S., Sereemaspun, A., Lee, H. & Baeg, G. H. GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling. Sci Rep 8, 9511 (2018). https://doi.org:10.1038/s41598-018-27864-6
    25 Suresh S, R. R., Garg M, Lumaquin D, Huang TH, Montal E, Ma Y, Cruz NM, Tang X, Nsengimana J, Newton-Bishop J, Hunter MV, Zhu Y, Chen K, de Stanchina E, Adams DJ, White RM. Identifying the Transcriptional Drivers of Metastasis Embedded within Localized Melanoma. Cancer Discov., 13(11):194-215 (2023 Jan 9). https://doi.org:10.1158/2159-8290.CD-22-0427.
    26 Taddei, M. L., Giannoni, E., Fiaschi, T. & Chiarugi, P. Anoikis: an emerging hallmark in health and diseases. J Pathol 226, 380-393 (2012). https://doi.org:10.1002/path.3000
    27 Deng, Z., Wang, H., Liu, J., Deng, Y. & Zhang, N. Comprehensive understanding of anchorage-independent survival and its implication in cancer metastasis. Cell Death Dis 12, 629 (2021). https://doi.org:10.1038/s41419-021-03890-7
    28 Salt, M. B., Bandyopadhyay, S. & McCormick, F. Epithelial-to-mesenchymal transition rewires the molecular path to PI3K-dependent proliferation. Cancer Discov 4, 186-199 (2014). https://doi.org:10.1158/2159-8290.CD-13-0520
    29 Naito, T. & Saheki, Y. GRAMD1-mediated accessible cholesterol sensing and transport. Biochim Biophys Acta Mol Cell Biol Lipids 1866, 158957 (2021). https://doi.org:10.1016/j.bbalip.2021.158957
    30 Sandhu, J. et al. Aster Proteins Facilitate Nonvesicular Plasma Membrane to ER Cholesterol Transport in Mammalian Cells. Cell 175, 514-529 e520 (2018). https://doi.org:10.1016/j.cell.2018.08.033
    31 Goudarzi, A. The recent insights into the function of ACAT1: A possible anti-cancer therapeutic target. Life Sci 232, 116592 (2019). https://doi.org:10.1016/j.lfs.2019.116592
    32 Antalis, C. J. et al. High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res Treat 122, 661-670 (2010). https://doi.org:10.1007/s10549-009-0594-8
    33 Chang, T. Y., Chang, C. C., Ohgami, N. & Yamauchi, Y. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol 22, 129-157 (2006). https://doi.org:10.1146/annurev.cellbio.22.010305.104656
    34 Gerstberger, S., Jiang, Q. & Ganesh, K. Metastasis. Cell 186, 1564-1579 (2023). https://doi.org:10.1016/j.cell.2023.03.003
    35 Yeung, K. T. & Yang, J. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol 11, 28-39 (2017). https://doi.org:10.1002/1878-0261.12017
    36 Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14, 611-629 (2017). https://doi.org:10.1038/nrclinonc.2017.44
    37 Huang, X. et al. Mutational characteristics of bone metastasis of lung cancer. Ann Palliat Med 10, 8818-8826 (2021). https://doi.org:10.21037/apm-21-1595
    38 Roato, I. et al. Spontaneous osteoclastogenesis is a predictive factor for bone metastases from non-small cell lung cancer. Lung Cancer 61, 109-116 (2008). https://doi.org:10.1016/j.lungcan.2007.10.016
    39 Hayden, M. S. & Ghosh, S. Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 26, 253-266 (2014). https://doi.org:10.1016/j.smim.2014.05.004
    40 Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337-342 (2003). https://doi.org:10.1038/nature01658
    41 Li, L. C. et al. Cross-talk between TLR4-MyD88-NF-kappaB and SCAP-SREBP2 pathways mediates macrophage foam cell formation. Am J Physiol Heart Circ Physiol 304, H874-884 (2013). https://doi.org:10.1152/ajpheart.00096.2012
    42 Lehr, H. A. et al. Immunopathogenesis of atherosclerosis: endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation 104, 914-920 (2001). https://doi.org:10.1161/hc3401.093153
    43 Chen, L. et al. 25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells. Biochem Biophys Res Commun 484, 857-863 (2017). https://doi.org:10.1016/j.bbrc.2017.02.003
    44 Ichikawa, T. et al. 25-hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-kappaB dependent pathway. Exp Cell Res 319, 1176-1186 (2013). https://doi.org:10.1016/j.yexcr.2013.02.014
    45 Luo, M. et al. ZMYND8 is a master regulator of 27-hydroxycholesterol that promotes tumorigenicity of breast cancer stem cells. Sci Adv 8, eabn5295 (2022). https://doi.org:10.1126/sciadv.abn5295
    46 Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161-172 (2015). https://doi.org:10.1016/j.cell.2015.01.036
    47 Li, J. et al. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene 35, 6378-6388 (2016). https://doi.org:10.1038/onc.2016.168
    48 Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331-340 (1997). https://doi.org:10.1016/s0092-8674(00)80213-5
    49 Goldstein, J. L., DeBose-Boyd, R. A. & Brown, M. S. Protein sensors for membrane sterols. Cell 124, 35-46 (2006). https://doi.org:10.1016/j.cell.2005.12.022
    50 Wang, C. et al. Cholesterol Enhances Colorectal Cancer Progression via ROS Elevation and MAPK Signaling Pathway Activation. Cell Physiol Biochem 42, 729-742 (2017). https://doi.org:10.1159/000477890
    51 Montero, J. et al. Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res 68, 5246-5256 (2008). https://doi.org:10.1158/0008-5472.CAN-07-6161
    52 Vassilev, B. et al. Elevated levels of StAR-related lipid transfer protein 3 alter cholesterol balance and adhesiveness of breast cancer cells: potential mechanisms contributing to progression of HER2-positive breast cancers. Am J Pathol 185, 987-1000 (2015). https://doi.org:10.1016/j.ajpath.2014.12.018
    53 Solomon, K. R. et al. Ezetimibe is an inhibitor of tumor angiogenesis. Am J Pathol 174, 1017-1026 (2009). https://doi.org:10.2353/ajpath.2009.080551

    無法下載圖示 校內:2028-08-29公開
    校外:2028-08-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE