| 研究生: |
蔡東穎 Tsai, Tung-Ying |
|---|---|
| 論文名稱: |
土壤液化對地下維生管線影響之振動台試驗研究—建築物遠端管線 Shaking Table Test on the Influences of Soil Liquefaction on Buried Lifelines -Pipelines at the Far Side of Buildings |
| 指導教授: |
柯永彥
Ko, Yung-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | 土壤液化 、地下維生管線 、液化引致上浮 、振動台試驗 、層狀剪力盒 |
| 外文關鍵詞: | Soil liquefaction, Buried lifelines, Liquefaction-induced uplift, Shaking table test, Laminar shear box |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為充分了解土壤液化對地下維生管線之不利影響,利用大型雙軸向柔性邊界試驗箱製作實尺寸建築物地下維生管線之物理模型,以代表性實際地震紀錄做為輸入運動進行振動台試驗,實際觀察地震所激發之超額孔隙水壓、其所導致之管線上浮或沉陷、以及土壤液化引致地盤變位對掩埋於其中之管線所造成之作用。本研究針對該試驗中之建築物遠端管線,亦即連接用戶管之次要輸配幹管來進行探討,以兩端無束制之2 m長管線來近似長距離管線,並取三種不同用途與材質之管線,分別為常見之污水PVC-U管、自來水延性鑄鐵管(DIP)及天然氣HDPE管。試驗中,於管線上或周圍設置不同之量測儀器,以利充分瞭解管線於地盤內之運動行為、浮沉之位移量及超額孔隙水壓激發情形等;同時也於土體地盤內設置自由場量測儀器,藉此掌握地盤之受震液化狀態,以便與管線進行對照探討。另外,於試驗開始前與所有試驗結束後,利用透地雷達於地盤試體表面對地下管線試體施測,藉此掌握其受震前後之位置,並將探測結果與所量測之位移量相互比對。最後,採用Chian et al. (2014)建議之簡易檢核模式,對三種不同管線進行抗浮檢核,再利用管線上之水壓計實際量測值,積分估算超額孔隙水壓貢獻之上浮力,並與檢討簡易模式進行比較,檢討其可行性與適用性,以提供工程實務參考。
To investigate the influence of soil liquefaction on buried lifelines , a large biaxial shear box was used to prepare a prototype physical model of buried building lifelines, and representative actual seismic records were adopted as input motions to conduct shaking table tests. In this research, the focus was on the pipelines at the far side of buildings , namely, the distribution main pipelines that connected to the service ones. 2 m-long pipelines with both ends unconstrained were used to approximate long-distance pipelines. Three different types of pipelines were included the sewage PVC-U pipes, the potable water ductile cast iron pipes (DIP), and natural gas HDPE pipes. Different measuring instruments were installed on or arround them to observe the dynamic movement, as well as the floating or sinking of the pipelines, and also the generation of excess pore water pressure. Additionally, measuring instruments were also installed in the far field of the ground specimen to investigate the seismic response of the ground during soil liquefaction and to be compared with the pipelines. Before the beginning and after the completion of all the tests, the ground-penetrating radar (GPR) was also used to inspect the depth of the buried pipelines. Finally, the simplified method (Chian et al., 2014) was introduced for checking the anti-uplift stability on three different pipelines. The results were further compared with the uplift force estimated based on the actual measurement of the excess pore water pressure around the pipeline to examine the applicability of the simplified method for the reference of engineering practice. suggestions.
1.陳正興、陳家漢(2014),地震引致的土壤液化與側潰現象,科學發展期刊第 498 期,12-17頁。
2.行政院內政部營建署(2020),「建築物給水排水設備設計技術規範」。
3.臺南市政府水利局(2020),臺南市永康區污水下水道系統 (PA分區)用戶接管工程第二標-施工說明(簡報),19頁。
4.石瑞銓、吳毓泰、陳芷辰、許崑泉(2020),重複發生的土壤液化事件,科學發展期刊 574 期。
5.行政院經濟部水利署(2016),「自來水用戶用水設備標準」。
6.臺北自來水事業處(2020),中華民國109年統計年報。
7.吳世紀(2014),延性鑄鐵管耐震能力評估及發展,自來水會刊,第 33 卷第 3 期,47-54頁。
8.陳正興、黃俊鴻、鄧崇任、柴駿甫、翁元滔、陳皆儒、王淳讙、王國隆、邱俊翔、宋裕 祺、廖文義、卿建業(2009),公共工程性能設計準則之研究,行政院公共工程委員會委託研究計劃。
9.盧志杰、黃俊鴻、柯永彥、倪勝火(2019),“2018 日本北海道地震勘災摘要報告”,第 162 期,73-84 頁。
10.翁作新、陳家漢、程漢瑋、吳繼偉(2006),大型振動台剪力盒土壤液化試驗(Ⅲ) ─ 飽和越南砂式體受震沉陷之探討,國家地震工程研究中心。
11.鄭崑硯 (2022),土壤液化對地下維生管線影響之振動台試驗研究—建築物近端管線,國立成功大學土木工程研究所,碩士論文。
12.Hazen, A. "Hydraulic Fill Dams". Transactions of the American Society of Civil Engineers. 83: 1717–1745, 1920.
13.Casagrande, A. ,“Characteristics of cohesionless soils affecting the stability of slopes and earth fills”, Journal of the Boston Society of Civil Engineers, reprinted in Contributions to Soil Mechanics, Boston Society of Civil Engineers, 1940, pp.257-276. ,1936.
14. Ishihara, K.,“Stability of natural deposits during earthquakes”, International conference on soil mechanics and foundation engineering. 11., pp 321-376 ; 1985 .
15.Cubrinovski, M., Hughes, M., Bradley, B., McCahon, I., McDonald, Y., Simpson, H., Cameron, R., Christison, M., Henderson, B., Orense, R., O’Rourke, T. (2011), Liquefaction Impacts on Pipe Networks, Research Report 2011-04, University of Canterbury.
16.Ling, H.I., Mohri, Y., Kawabata, T., Liu, H., Burke, C., Sun, L. (2003), “Centrifugal modeling of seismic behavior of large-diameter pipe in liquefiable soil”, Journal of Geotechnical and Geoenvironmental Engineering, 129(12), 1092-1101.
17. Kang, G.C., Tobita, T., Iai, S., Ge, L. (2013), “Centrifuge modeling and mitigation of manhole uplift due to liquefaction”, Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 458-469.
18.Jafarzadeh, F., Jahromi, H.F., Abazari, Torghabeh, E. (2010) “Investigating dynamic response of a buried pipeline in sandy soil layer by 1g shaking table test”, International Journal of Civil Engineering, 8(2), 107-124.
19.Chen, C.H., Ting, G.C., Chang, W.K., Hwang, J.H (2018), “Development of a new biaxial shear box for shaking table tests simulating near-fault earthquakes”, 8th Japan-Taiwan Workshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfall, Kyoto, Japan.
20.Chian, S.C., Madabhushi, S.P.G. (2012), “Effect of buried depth and diameter on uplift of underground structures in liquefied soils”, Soil Dynamics and Earthquake Engineering, 41, 181-190.
21. Chian, S.C., Tokimatsu, K., Madabhushi, S.P.G. (2014), “Soil liquefaction–induced uplift of underground structures: physical and numerical modeling”, Journal of Geotechnical and Geoenvironmental Engineering, 140(10).
22.Siau Chen Chian, Junkan Wnag, Stuart K Haigh, Santana P H Madabhushi (2015), “Soil deformation during monotonic and seismic pipe uplift in liquefiable soil”, The Journal of Pipeline Engineering, 40.
23.Cubrinovski, M. (2013) “Liquefaction-induced damage in the 2010-2011 Christchurch (New Zealand) Earthquakes”, 7th International Conference on Case Histories in Geotechnical Engineering, Chicago, IL.
24. Shimamura, K, Hamada, M., Yasuda, S, Kojima, S., Fujita, Y., Kikuchi, T. (2000), “Experimental and analytical study of the floatation of buried gas steel pipe due to liquefaction”, 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
25. Shimamura, K., Hamada, M., Yasuda, S., Ohtomo, K., Fujita, Y., Kojima, S., Taji, Y. (2000), “Load on pipes buried in a non-liquefaction layer due to liquefaction-induced ground displacement”, 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
26. Suganuma, K. (2005), “3-D Full-Scale Earthquake Testing Facility (E-Defense)”, Science & Technology Trends Quarterly Review, 14, 83-91.
27.Ueng, T.S., Wang, M.H., Chen, M.H., Chen, C.H., Peng, L.H. (2006), “A large biaxial shear box for shaking table tests on saturated sand”, Geotechnical Testing Journal, 29(1), 1-8.