| 研究生: |
蔡孟哲 Tsai, Meng-Che |
|---|---|
| 論文名稱: |
探勘Facebook互動行為之自動化預測人格類型方法發展 Development of an Approach for Automatically Classifying User's Personality Type by Mining Interactions in Facebook |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 共同指導教授: |
陳宗義
Chen, Tsung-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 社交媒體 、Facebook 、人格類型預測 、DISC行為風格理論 、互動行為特徵 、文字探勘 、編輯距離 、群眾外包 |
| 外文關鍵詞: | Social Media, Facebook, Personality Predicting, DISC Theory, Interaction Feature, Text Mining, Edit Distance, Crowdsourcing |
| 相關次數: | 點閱:127 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
企業的目的就是創造顧客,順利創造顧客的關鍵往往取決於是否能掌握掌握溝通對象之人格特質以採用有效的溝通策略。對於企業來說,目標顧客或者潛在顧客是其需掌握人格資訊的對象,然而傳統的人格評測方式在時間與人力的成本過於高昂,且無法作到不著痕跡地掌握顧客人格資訊,因此如何能有效地對大量對象進行自動化人格預測便是值得研究的議題。近年蓬勃發展的各式社交媒體由於已成為使用者公開發表言論並與他人互動之數位平台,或有助於實現自動化人格預測之需求。
本研究以當前世上會員數最多的社交媒體網站─Facebook之使用者資料作為基礎,發展一能夠由使用者「互動行為紀錄」與「動態文章」進行人格類型預測的方法。研究中使用Marston所提出的DISC作為人格模型,並藉由設計使用者於Facebook的互動行為特徵、以文字探勘技術如TF-IDF與VSM計算使用者動態文章類型、應用正規化編輯距離以挖掘使用者互動行為相似序列等方式實現人格預測的目的。本研究亦為社交媒體互動行為建立通用模型、提出能夠有效率設計社交媒體特徵的方法以及設計並實作以群眾外包為基礎的Facebook資料蒐集機制,讓真實的Facebook使用者有效率地提供資料並協助完成訓練資料的標註。
For an enterprise, it is fundamental to win as many customers as possible. The key to successfully winning customers is often determined by understanding the personality characteristics of communication objects in order to employ an effective communications strategy. An enterprise needs to obtain the personality information of target or potential customers. However, the traditional method for personality evaluation is extremely costly because of time and labor consumption, and it is incapable of acquiring customer personality information without their awareness. Therefore, the manner in which to effectively conduct automated personality predicts for a large number of objects is an important issue. The diverse social media that have emerged in recent years have become a digital platform where users deliver their speeches publicly and interact with others. Perhaps social media can serve the needs of automated personality predicts. Based on Facebook user data, the main social media platform in the world, this research developed three methods for predicting personality types based on interactions logs and users’ statuses. In this research, Dominance, Inducement, Submission, Compliance (DISC) proposed by Marston is used as the personality model. To predict personality types, the interaction features of users were designed accordingly and calculated, and some text mining technique such as TF-IDF, VSM, and normalized edit distance were used in this research. For interactions, this research also serves to build a universal model for social media interaction, and it is used to propose an efficient method for designing interaction features; for users’s statuses, this research developed a complete mechanism based on crowdsourcing, and it could make real Facebook users provide their data and label training data efficiently.
[1] Adalı S. and Golbeck J., Predicting Personality with Social Behavior. International Conference on Advances in Social Networks Analysis and Mining (ASONAM). (2012). p.302-309.
[2] Adali S., Sisenda F., and Magdon-Ismail M., Actions Speak as Loud as Words: Predicting Relationships from Social Behavior Data. WWW'12 Proceedings of the 21st international conference on World Wide Web, p.689-698. (2012).
[3] Alessandra T. and O'Connor M. J., The Platinum Rule: Discover the Four Basic Business Personalities andHow They Can Lead You to Success. Grand Central Publishing. (1998).
[4] Amazon Mechanical Turk, https://www.mturk.com/mturk/ . (2015).
[5] Arslan, A. N. and Egecioglu, O., Efficient algorithms for normalized edit distance. Journal of Discrete Algorithms (Special Issue on Matching Patterns), 1(1):3-20. (2000).
[6] Back M., Stopfer J., Vazire S., Gaddis S., Schmukle S., Egloff B., and Gosling S., Facebook Profiles Reflect Actual Personality, Not Self-Idealization. Psychological Science, 21(3):372. (2010).
[7] Bai S.T., Zhu T.S. and Cheng L., Big-Five Personality Prediction Based on User Behaviors at Social Network Sites. eprint arXiv:1204.4809. (2012).
[8] Baron, R. and Wagele, R., Are You My Type, Am I Yours? Relationships Made Easy through the Enneagram. SanFrancisco, CA: Harper. (1995).
[9] Blignaut P. and Naude A., The influence of temperament style on a student’s choice of and performance in a computer programming course. Computers in Human Behavior 24 (2008) p.1010–1020. (2008).
[10] Boyd, C. F., Different children different needs: the art of adjustable parenting. Oregon: Questar Publishers Inc. (1994).
[11] Doan A., Ramakrishnan R., and Halevy A. Y., Crowdsourcing Systems on the World-Wide Web.” Communications of the ACM, Vol. 54 No. 4, p.86-96. (2011).
[12] Drucker P. F., The Practice of Management. New York: Harper & Brothers. (1954).
[13] Facebook, https://www.facebook.com/ . (2015).
[14] Facebook Graph API., https://developers.facebook.com/docs/javascript/reference/FB.api . (2015).
[15] Funder D. C., Personality. Annual Review of Psychology, 52, p.197–221. (2000).
[16] g0v.tw, http://g0v.tw/zh-TW/projects.html . (2014).
[17] Golbeck, J., Robles, C., and Turner, K., Predicting personality with social media. In Proceedings of the 29th ACM Conference on Human Factors in Computing Systems (CHI). (2011).
[18] Howe J., The Rise of Crowdsourcing. In Wired Magazine 14(6). http://archive.wired.com/wired/archive/14.06/crowds_pr.html . (2006).
[19] InnoCentive, https://www.innocentive.com/ . (2015).
[20] Jung C. G., Psychological Types. Routledge. (2014). (First published 1921.)
[21] Knapp M. L. and Daly J. A., Handbook of Interpersonal Communication. SAGE Publications. (2002).
[22] Lee E., Ahn J. and Kim Y. J., Personality traits and self-presentation at Facebook. Personality and Individual Differences 69 (2014) p.162–167. (2014).
[23] Levenshtein V. I., Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys.&mdash,Dokl., vol. 10, p.707 -710. (1966).
[24] Marston W. M., Emotions Of Normal People. Kegan Paul Trench Trubner And Company., Limited. (1928).
[25] Marzal A. and Vidal E., On the computation of normalized edit distances revisited. Tech. Rep. DSIC-II/i5/1991, Depto. de Sistemas Informaticos y Computacion, Univ. Politecnica de Valencia. (1991).
[26] Marzal A. and Vidal E., Computation of Normalized Edit Distance and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 9. (1993).
[27] MBAlib, DISC. http://wiki.mbalib.com/zh-tw/DISC . (2015).
[28] McCrae R. R. and Costa P. T., Personality trait structure as a human universal. Am Psychol. 1997 May;52(5):509-16. (1997).
[29] Moore K. and McElroy J. C., The influence of personality on Facebook usage, wall postings, and regret. Computers in Human Behavior archive Volume 28 Issue 1, January, 2012 p.267-274. (2012).
[30] Nadkarni A. and Hofmann G. H., Why do people use Facebook? Personality and Individual Differences Volume 52, Issue 3, February 2012, p.243–249. (2012).
[31] Oommen B. J. and Zhang K., The Normalized String Editing Problem Revisited. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 6. (1996).
[32] Ortigosa A., Carro R. M., and Quiroga J. I., Predicting user personality by mining social interactions in Facebook. Journal of Computer and System Sciences 80. p.57-71. (2014).
[33] Rosenberg M. and Silvert D., Taking Flight!: Master the DISC Styles to Transform Your Career, Your Relationships...Your Life. FT Press. (2012).
[34] Salton G., Wong A., and Yang C. S., A vector space model for automatic indexing. Communications of the ACM CACM Homepage archive Volume 18 Issue 11, p.613-620. (1975).
[35] Seidman G., Self-presentation and belonging on Facebook: How personality influences social media use and motivations. Personality and Individual Differences Volume 54, Issue 3, February 2013, p.402–407. (2013).
[36] The University of Waikato, Weka. http://www.cs.waikato.ac.nz/ml/weka/ . (2015).
[37] The University of Waikato, Awards and Prizes of Department of Computer Science. http://www.cs.waikato.ac.nz/research/awards.html . (2015).
[38] Wikipedia, Social Media. http://en.wikipedia.org/wiki/Social_media#Distinction_from_other_media .
[39] Wikipedia, Facebook. http://zh.wikipedia.org/wiki/Facebook . (2015).
[40] Wikipedia, Levenshtein distance. https://en.wikipedia.org/wiki/Levenshtein_distance . (2015).
[41] Yand J. H. and Honavar V., Feature Subset Selection Using a Genetic Algorithm. IEEE Intelligent Systems, Vol. 13, No. 2, p.44-49. (1998).
[42] Zhao S., Grasmuck S., and Martin J., Identity construction on Facebook: Digital empowerment in anchored relationships. Computers in Human Behavior, 24(5).1816–1836. (2008).
[43] 中央研究院,中文斷詞系統(CKIP)。http://ckipsvr.iis.sinica.edu.tw/。(2015)。
[44] 林靈宏與張魁峰,消費者行為學。五南圖書出版股份有限公司。(2009)。
[45] 國家教育研究院雙語詞彙、學術名詞暨辭書資訊網。http://terms.naer.edu.tw/detail/1678987/?index=1。(2015)。
[46] 郭珮甄,人格特質對工作績效之影響探討 ─以M公司大陸廠間接人員為例,國立中央大學人力資源管理研究所碩士論文。(2003)。
[47] 陳伶志與余孝萱,淺談群眾外包—以Amazon Mechanical Turk為例。中央研究院電子週報第309期。取自:http://newsletter.sinica.edu.tw/news/read_news.php?nid=5613。(2011)。
[48] 劉彥辰,虛擬社群之潛在顧客搜索機制研發-以食品業應用為例,國立成功大學製造資訊與系統研究所碩士論文。(2012)。
[49] 獎金獵人。https://bhuntr.com/tw。(2015)。
[50] 蔡孟勳,群眾外包:從太陽花學運到美國矽谷都在用的經營模式。有物報告。取自:https://yowureport.com/從太陽花學運到終極警探-談群眾外包(crowdsourcing)/。(2014)。
[51] 鄭勝泰,人格特質對工作績效影響之探討 ─以某運輸服務業之T公司為例,國立中央大學人力資源管理研究所碩士論文。(2002)。