簡易檢索 / 詳目顯示

研究生: 許培信
Hsu, Pei-Hsin
論文名稱: 樑結構系統之健康監控
Stiffness and Mass Matrices Identification of a Beam Structure with Defect
指導教授: 鄭泗滄
Jenq, Si-Cang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 76
中文關鍵詞: 人工類神經網路健康監控正交函數法結構模型縮減基因演算法
外文關鍵詞: artificial neural network, orthogonal polynomials, damage identification, Guyan reduction, simple genetic algorithm
相關次數: 點閱:68下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    題目:樑結構系統之健康監控
    研 究 生:許培信
    指導教授:鄭泗滄
    本文主要針對一簡單樑結構模型系統,經由外力及量測結構模型時態的反應可以識別出損傷結構或未損傷結構的元素勁度矩陣及質量矩陣。首先利用有限元素法建立結構模型經過Guyan Reduction的過程將系統結構模型縮減,再利用正交函數展開法將系統的時態響應資料展開,配合最小平方誤差法識別出縮減模型系統的元素勁度矩陣及質量矩陣。由於識別出的資料不容易看出損傷狀況,所以再利用人工類神經網路(Artificial Neural Network)建立縮減前後系統模型的關連性以檢視元素的損傷狀況。人工類神經網路屬於非參數性識別,特點在於訓練完成後直接給予輸入便可利用訓練所得的權重及閥值求得輸出,但是在訓練過程中所得到的權重及閥值並沒有意義,且訓練需要大量的時間及訓練範例。基於這些原因,欲尋求其他的最佳化方法,在此採用另一種全域的搜索方法,基因演算法,經由自行定義參數,比起人工類神經網路更有物理意義。經由數值分析及模擬,可以驗證這樣的一套流程的確可以成功的找出結構損傷元素的位置及程度。

    Abstract
    Stiffness and Mass Matrices Identification of a Beam
    Structure with Defect
    Student : P. H. Hsu
    Advisor : S. T. Jenq
    This thesis is concerned with the damage identification of a simple beam structure in order to monitor the structural health condition. The damaged structural stiffness and mass matrices are to be identified based on the specified loading and measured response signals. The finite element beam model is simplified to a substructure model according to the Guyan reduction method and substructure method. The orthogonal polynomials approach is then used to extract the proposed distributed parameter model in question with structural response data. The identified structural stiffness and mass matrices for the reduced model with or without damage are furthermore transformed to the parameters which correspond to the global unreduced structural model by means of the back-propagation artificial neural network scheme or simple genetic algorithm. Based on the identified damaged structural stiffness and mass matrices, the damage locations and the degree of damage of the beam structure in question are then determined. Through the numerical validation, current identification process is capable of monitoring the structural health condition by using the time domain input and output signals.

    博碩士論文授權書 致謝 中文摘要 英文摘要 目錄………………………………………………………………………………………Ⅰ 表目錄……………………………………………………………………………………Ⅳ 圖目錄……………………………………………………………………………………Ⅴ 第一章 簡介………………………………………………………………………………1 1-1 研究背景與目的 ……………………………………………………………………1 1-2 文獻回顧 ……………………………………………………………………………1 1-3 研究方法 ……………………………………………………………………………2 第二章 結構模型縮減……………………………………………………………………3 2-1 結構模型縮減緒論 …………………………………………………………………3 2-2 蓋揚縮減法 (Guyan Reduction) …………………………………………………3 2-2-1 靜態縮減 (static reduction)…………………………………………………3 2-2-2 蓋揚縮減 (Guyan reduction) …………………………………………………4 2-3 次結構法 (substructure method) ………………………………………………6 2-4 結構模型縮減的驗證 ………………………………………………………………11 2-4-1 模型尺寸、材料常數及邊界條件 ………………………………………………11 2-4-2 結果比較 …………………………………………………………………………11 第三章 正交函數展開法 ………………………………………………………………13 3-1 正交函數法基本概念 ………………………………………………………………13 3-2 應用正交函數展開法於縮減模型參數識別 ………………………………………13 3-3 正交函數展開法結果驗證 …………………………………………………………17 第四章 人工類神經網路(Artificial Neural Network) ……………………………18 4-1 人工類神經網路緒論 ………………………………………………………………18 4-1-1 類神經網路的基本架構 …………………………………………………………18 4-2 倒傳遞類神經網路(Back –propagation Network,BPN)………………………19 4-2-1 倒傳遞類神經網路架構 …………………………………………………………20 4-2-2 倒傳遞類神經網路演算法 ………………………………………………………21 第五章 基因演算法(Genetic Algorithm) ……………………………………………28 5-1 基因演算法的概念 …………………………………………………………………28 5-2 基因演算法的形式 …………………………………………………………………28 5-3 基因演算法的步驟 …………………………………………………………………30 5-3-1 複製(Reproduction) ……………………………………………………………30 5-3-1-1 輪盤式選擇(Roulette Wheel Selection or Proportionate Selection)…………………………………………………………30 5-3-1-2 競賽式選擇(Tournament Selection) ………………………………………31 5-3-2 交配(Crossover)…………………………………………………………………31 5-3-3 突變(Mutation) …………………………………………………………………33 5-3-4 菁英策略(Elitist Strategy) …………………………………………………33 5-3-5 收斂準則(Convergence Criteria) ……………………………………………33 5-4 基因演算法的優異性 ………………………………………………………………34 第六章 應用類神經網路演算法與基因演算法於結構損傷識別………………………35 6-1 前言 …………………………………………………………………………………35 6-2 應用類神經網路演算法於樑結構系統損傷位置及程度識別 ……………………35 6-2-1 類神經網路訓練結果驗證 ………………………………………………………38 6-3 應用基因演算法於樑結構系統損傷位置及程度識別 ……………………………39 6-3-1 參數設定及定義目標函數 ………………………………………………………39 6-3-2 應用基因演算法於損傷識別之結果 ……………………………………………42 6-4 結果與討論 …………………………………………………………………………43 第七章 結論與建議………………………………………………………………………46 7-1 結論 …………………………………………………………………………………46 7-2 建議 …………………………………………………………………………………47 參考文獻 …………………………………………………………………………………48 附表 ………………………………………………………………………………………50 附圖 ………………………………………………………………………………………58 自述 著作權聲明

    參考文獻
    1. Guyan, R. J., “Reduction of Stiffness and Mass Matrices,” AIAA,
    Vol. 3, No.2 1965, pp. 380
    2. William Weaver, Jr. and Paul R. Johnston, “Structural Dynamics by Finite Elements”, Prentice-Hall, 1987
    3. B.M.MOHAN and K.B.DATTA, “Identification Via Fourier Series for a Class Lumped and Distributed Parameters Systems” IEEE Transactions on Circuits and Systems, vol.36, no.11, pp.1454-1458 November 1989
    4. K.B.DATTA, ”Continuous Model Identification Via Orthogonal Polynomials” Identification of Continuous –Time Systems, pp227-258, Kluwer Academic Publishers
    5. H.Y.Chung, “System Identification via Fourier Series”, Int. J. Systems Sci., Vol.18, No.6, 1191-1194
    6. 葉怡成,”類神經網路模式應用與實作”,儒林,1993
    7. David E. Goldberg, “Genetic Algorithm in Search, Optimization, and Machine Learning”, Addison-Wesley Publishing Company, 1989
    8. Edward F. Crawley and Javier de Luis, “Use of Piezoelectric Actuators as Elements of Intelligent Structures”, AIAA, Vol. 25, No.10 1987, pp. 1373-1385
    9. Renato Barboni, Alessandro Mannini, Enrico Fantiti and Paolo Gaudenzi, “Optimal placement of PZT actuators for the control of beam dynamics”, Smart Master. Structure, Vol. 9, 2000, pp.110-120
    10. Rumelhart, D. E., Hinton, G. E., and Williams, P. J.,1986, “Learning Internal Representation by Error Propagation.” in Parallel Distributed Processing, D. E Rumelhart and J. L. McClelland, Eds. Cambridge, MA:MIT Press
    11. R. A. Jacobs, (1988), ”Increased Rates of Convergence Through Learning Rate Adaption.”, Neural Network, Vol. I, 295-263
    12. T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink and D. L. Alkon,(1988), “Acceleration the Convergence of the Backpropagation Method.”, Biological Cybernetics, Vol. 59, 257-263
    13. A. A. Minai and R. D. Williams,(1990), “Acceleration of Backpropagation Through Learning Rate and Momentum Adaptation.”, IJCNN, Vol. I, 676-679

    下載圖示 校內:立即公開
    校外:2002-08-01公開
    QR CODE