簡易檢索 / 詳目顯示

研究生: 郭哲豪
Kuo, Che-Hao
論文名稱: 二氧化鈦與奈米矽,非晶矽鍺及氧化鎢複合膜的 可見光催化特性及親水性之研究
A Study of Super-Hydrophilic and Photocatalytic Properties of TiO2 Coated with nc-Si, a-SiGe:H and WO3 films under Visible Light Irradiation
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 98
中文關鍵詞: 光觸媒可見光超親水二氧化鈦
外文關鍵詞: photocatalytic, visible light, super-hydrophilic, TiO2
相關次數: 點閱:113下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   以二氧化鈦製備的薄膜具有相當不錯的氧化還原分解效果及優越的超親水現象;不過,該薄膜欲產生良好的效果,尚需要外加紫外光光源的照射,而無法於可見光下作用,進而降低了日常應用的便利。故在本研究中,吾人著重於此薄膜在可見光下特性的改善。吾人以射頻磁控式電漿鍍膜法成長TiO2 薄膜(99.9%,rutile structure),並
    輔以PECVD 成長a-SiGe:H 薄膜、蒸著機成長WO3 薄膜、Hotwire CVD成長奈米矽薄膜,與TiO2 膜在玻璃基材上形成複合膜。製程參數則設定成長真空度、濺鍍功率、基板溫度為固定不變,而以氮氬流量比、是否有進行退火及多層膜結構為變數。
      在特性的量測測試上,我們以UV-Visible 分光光譜儀,去量測其穿透率,並輔以Methylene Blue 量測出光觸媒分解的效果;此外,以接觸角量測儀,測量其超親水性角度的變化。
      由研究結果得知,以單層膜的構造而言,以60W 的功率,在1x10-5 的真空度,以0.8Å/s 以下的成長速率,以氮氬流量比1:2 進行濺鍍時,所得之薄膜最具優秀的可見光光觸媒分解能力及超親水性。而在複合膜的構造,則以TiO2/nc-Si/a-Si 複合膜,具有最佳的可見光光觸媒分解能力及超親水性。

      TiO2 film has strong redox-reaction and super-hydrophilic property. However, to have a good performance, the films must be irradiated under UV light thus becoming inconvenience for real applications. In this thesis, we have concentrated our target on the improvement of photocatalytic property of TiO2 film under visible light irradiation. For the purpose,TiO2 films were prepared with radio-frequency sputtering system(99.9%,rutile structure), and incorporated with the evaporated WO3 films, PECVD deposited a-SiGe:H film, and Hotwire CVD deposited nano-silicon films(nc-Si) to form composite films. We tune the TiO2 processing parameters such as substrate temperature, sputtering power, and nitrogen flow rate, annealing process and varied the different composite film structure.
      The photocatalytic related property under UV and visible lights were characterized by the water-contact angle measurement, and oxidation of methylene blue in aqueous solution. On the other hand, the transmittance of the films were measured with UV-visible light Spectrometer.
      Experimental results show that for single film structure,the TiO2 films doped with N2 and formed under 150w Rf power, 0.8Å/s of sputtering rate, and 1:2 flow-rate of N2:Ar achieve a significant photocatalytic rate enhancement and super-hydrophilic phenomenon under visible light irradiation. While for composite films structure, TiO2/nc-Si/a-Si films possess the most photocatalytic rate enhancement and super-hydrophilic phenomenon.

    中文摘要................................................................I 英文摘要................................................................III 目錄 ...................................................................V 圖表目錄................................................................VII 第一章 前言 ............................................................1 第二章 理論與研究歷史 ..................................................3 2.1關於光觸媒 ..........................................................3 2.2光觸媒的光反應機制...................................................4 2.3二氧化鈦的材料特性 ..................................................5 2.4二氧化鈦的光觸媒特性 ................................................6 2.5二氧化鈦薄膜超親水性 (super-hydrophilic property)的原理 .............8 第三章 實驗儀器及相關原理 ..............................................9 3.1電漿助長化學汽相沉積系統 (PECVD) ....................................9 3.2退火系統 (Anneal System) ............................................10 3.3射頻磁控濺鍍系統 (Radio-Frequency Sputtering System) ................11 3.4蒸著機系統 (Thermal Evaporator) .....................................12 3.5玻璃基板(glass wafer)之清洗 .........................................13 3.6接觸角分析 ..........................................................14 3.7可見光光譜儀 ........................................................14 3.8 亞甲基藍溶液分解實驗原理 ...........................................15 第四章 單層膜結果與討論 ................................................17 4.1以布拉格反射鏡(Bragg Reflector)決定二氧化鈦膜厚 .....................17 4.2 通氮氣進行濺鍍的影響 ...............................................19 4.3 退火(annealing)處理對二氧化鈦光觸媒特性的影響 ......................21 第五章 以複合膜的方式提高二氧化鈦光觸媒效果 ............................23 5.1 TiO2 與 a-SiGe:H複合膜 .............................................23 5.1.1雙層結構 ..........................................................23 5.1.2TiO2與a-SiGe:H複合膜四層結構 ......................................24 5.2 二氧化鈦與氧化鎢複合膜的光觸媒特性 .................................26 5.2.1雙層膜結構 ........................................................26 5.2.2四層複合膜結構 ....................................................27 5.3 TiO2 與 nanocrystal Si複合膜 .......................................28 第六章 結論 ...........................................................31 參考文獻 ...............................................................34

    參考文獻
    1. A. Fujishima, K. Honda, Nature (London) 238 (1972) 37.
    2. 光觸媒圖解,2003,(土卡)田博史著
    3. M.S.Wrighton, Acc.Chem.Res.12 (1979) 303.
    4. A.J.Bard, Science207 (1980) 139
    5. P.Suppan, Chemistry and Light,Royal Society of Chemistry,
    Cambridge,1994,p5
    6.磁控濺鍍TiO2-WO3 複合膜光催化性質之研究,2003,呂信德
    7.二氧化鈦薄膜的性質和結構分析與其光觸媒行為,2003,徐清彬
    8. E. Keidel, Furben Zeitung 34 (1929) 1242
    9. N.Serpone, E Pelizzetti(Eds), Photocatalysis: Fundamentals and
    Applications, Wiley, New York,1989
    10. M. A. Fox, M. T. Dulay, Chem. Rev. 93 (1993) 341.
    11. P. V. Kamat, Chem. Rev. 93 (1993) 267.
    12. A. Mills, R .H. Davies, D.Worsley,Chem.Soc.Rev.95 (1993) 417
    13. A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 95 (1995) 735
    14. M.Gratzel, Heterogeneous Photochemical Electron Transfer ,
    CRC Press, Boca Raton, 1989
    15. D.Ollis, H. El-Akabi (Eds), Photocatalytic Purification and
    Treatment of Water and Air, Elsevier, New York, 1988
    16. M. Sciavello (Ed), Photocatalysis and Environment: Treads and
    Applications, Kluwer Academic Publishers,Dordrecht,1998
    34
    17. M. R. Hoffmann, S.T.Martin, W.Choi,and D. W. Bahnemann,
    Chem. Rev. 20 (1995) 69-95
    18. Wang. R, Hashimoto K, Fujishima A, Chikuni M, Kojima E,
    Kitamura A, Shimohigoshi M, Watanabe T. 1997. Light-induced
    amphiphilic Surfaces. Nature 388(6641):431-432
    19. 化學資訊月刊14 卷第8 期
    20 A. Heller, Acc. Chem. Res. 28 (1995) 503
    21. R. Cai, Y. Hashimoto, K. Itoh, Y. Kubota, A. Fujishima, Bull.
    Chem. Soc. Jap. 64 (1991) 1268
    22.Takata Y, Tanaka K, Kaijima K, Ito T, Watanabe T, Shimohigoshi
    M. 1999a Enhancement of heat transfer with liquid-vapor phase
    change by photo-induced hydrophilicity. Proceedings of 33rd
    National Heat Transfer Conference, NHTC99-080.
    23 Jyh-Jier Ho*, Yean-Kuen Fang** and Ming-Shaung Ju**, A Study
    of High Performance Sensors with Micro -electro-mechanical
    system (MEMS) Technology 1998
    24. A. K. Ghosh, H. P. Maruska, J. Electrochem. Soc. 124, 1516
    (1977) .
    25 W. Choi et al., J. Phys. Chem. 98, 13669(1994.and references
    therein)
    26. M. Anpo, Catal. Surv. Jpn. 1, 169 (1997)
    27. R.Asahi, T. Morikawa, Science vol 293 ,13 , 2001
    28.Y. Takata, S Hidaka, M. Masuda and T. Ito, “Pool Boiling on a
    Superhydrophilic surface”, Int. J. Energy Res. 2003;27:111-119.
    35

    下載圖示 校內:2006-07-20公開
    校外:2007-07-20公開
    QR CODE