簡易檢索 / 詳目顯示

研究生: 洪子傑
Hung, Zih-Jie
論文名稱: 以差排密度晶體塑性有限元素法探討不同退火溫度析出硬化對 Cantor Alloy力學行為的影響
The effect of Precipitation Hardening at Different Annealing Temperatures on the Mechanical Behavior of Cantor Alloy Based on the Dislocation Density CPFEM
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 游濟華
Yu, Chi-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 88
中文關鍵詞: 高熵合金Cantor alloy晶體塑性有限元素法析出物CoCrFeMnNi
外文關鍵詞: High entropy alloy, crystal plasticity finite element method, Cantor alloy, precipitation hardening, CoCrFeMnNi
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不同於傳統合金的新型態合金,高熵合金成為近年來熱門的研究項目,主要是以多種元素以一定比例進行混合,因其特性,能夠展現不同於過去金屬的優異機械性能,其中CoCrFeMnNi,又稱為 Cantor alloy的高熵合金已經有了多年的研究,有針對其不同元素成分含量、不同熱處理過程、不同添加物進行各種不同的研究。而材料的開發需要高昂的時間及金錢成本,近年來因電腦軟體運算漸趨成熟,以電腦模擬進行設計,以降低開發成本成了近年來的趨勢,且電腦模擬已廣泛運用於各種不同的領域。
    本研究以計算力學建立一套以晶體塑性有限元素法為基礎利用多晶代表性體積元素模型 針對非等原子 Cantor alloy合金進行拉伸模擬分析,並導入了 能夠考慮微觀下差排作用及析出物效應 的硬化模型,以更接近真實的力學行為。針對材料參數對於應力應變曲線及統計儲存差排密度和幾何必要差排密度的效應進行完整的探討後,利用真實實驗下所獲 得 的 SEM-BSE圖進行析出物的分析, 將實驗所得的材料基本參數進行 部分實驗 曲線的擬合,成功的利用參數反映出應力應變曲線加工硬化行為及析出物對差排的影響,能夠描述在不同的退火溫度下,退火1小時之應力應變曲線及差排密度增長。 並利用差排密度發展情形解釋材料應力應變曲線的硬化行為,接著將剩下未擬合之 實驗應力應變曲線 用以驗證參數預測的準確性 。
    探討不同退火溫度下之析出物效應影響及差排密度後利用現有實驗資料以及擬合參數值,迴歸出預測方程式,預測 出沒有實驗數據之不同退火溫度下的應力應變曲線,達到利用現有的實驗數據進行預測,減少實驗成本並提供設計金屬的參考 。

    This research is based on dislocation density crystal plasticity finite element method, using Dream 3D to establish polycrystalline representative volume element(RVE) model. After, simulate tensile test on CoCrFeMnNi RVE model ,and consider the microscopic Mechanical behavior like dislocation slip and precipitate.
    Discussing the influence of material parameters on the stress-strain curve , Statistically stored dislocation density(SSD) and Geometrically necessary dislocation density(GND).The precipitates are analyzed using the SEM-BSE image and material parameters obtained from the experiment data which are used in the curve fitting ,these parameters successfully reflects the work hardening behavior of the stress-strain curve and the influence of precipitates on dislocation.
    It can describe the stress-strain curve and the growth of the dislocation density after annealing for 1 hour at different annealing temperatures. And use the growth of the dislocation density to explain the hardening behavior of the material stress-strain curve, and then use the unfitted experimental stress-strain curve to verify the accuracy of the parameter prediction.
    Finally ,discussing the precipitates and dislocation density at different annealing temperatures, using existing experimental data and fitting parameter values, regression prediction equations are used to predict the mechanical behavior at different annealing temperatures without experimental data.

    目錄 摘要 I 目錄 VI 圖目錄 VIII 表目錄 XII 第1章 緒論 1 1.1 前言 1 1.2 四大效應 2 1.3 文獻回顧 4 1.3.1 晶體塑性模型發展 4 1.3.2 CoCrFeMnNi高熵合金 5 1.3.3 非等原子CoCrFeMnNi實驗及析出物[17] 8 1.4研究目的 13 1.5論文架構 14 第2章 研究方法 15 2.1晶體塑性理論 15 2.2晶體塑性有限元素法 22 2.3 差排密度加工硬化模型 23 2.4 Abaqus Umat於晶體塑性模型之應用 25 2.5分析流程 30 2.5.1 Dream 3D 模型建立流程 30 2.5.2 尤拉角 31 2.5.3 週期性邊界條件 33 2.5.4 ImageJ 析出物分析 34 2.6 分析流程 37 第3章 參數影響分析 39 3.1 Taylor模型參數 40 3.2 塑性流參數 42 3.3幾何必要差排密度(GND) 47 3.4統計儲存差排密度(SSD) 50 第4章 CoCrFeMnNi 拉伸模擬 55 4.1 材料參數 55 4.2 單晶拉伸模擬 60 4.3多晶拉伸模擬 69 4.4討論 79 4.5多晶參數預測其餘溫度 81 第5章 結論與未來展望 84 5.1總結 84 5.2未來展望 85 參考文獻 86

    [1] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303.
    [2] Huang, P. K., Yeh, J. W., Shun, T. T., & Chen, S. K. (2004). Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 6(1‐2), 74-78.
    [3] Gaskell, D. R. (2012). Introduction to the Thermodynamics of Materials. CRC press.
    [4] Cheng, C. Y., Yang, Y. C., Zhong, Y. Z., Chen, Y. Y., Hsu, T., & Yeh, J. W. (2017). Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Current Opinion in Solid State and Materials Science, 21(6), 299-311.
    [5] Kalidindi, S. R. (2004). Micro‐Mechanical Finite Element Models for Crystal Plasticity. Continuum Scale Simulation of Engineering Materials: Fundamentals–Microstructures–Process Applications, 529-542.
    [6] [19] Mecking, H., & Kocks, U. F. (1981). Kinetics of flow and strain-hardening. Acta metallurgica, 29(11), 1865-1875.
    [7] Taylor, G. I. (1938). Plastic strain in metals. J. Inst. Metals, 62, 307-324.
    [8] Cheng, L. M., Poole, W. J., Embury, J. D., & Lloyd, D. J. (2003). The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030. Metallurgical and Materials Transactions A, 34(11), 2473-2481.
    [9] Myhr, O. R., Grong, Ø., & Pedersen, K. O. (2010). A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys. Metallurgical and Materials Transactions A, 41(9), 2276-2289.
    [10] Cantor, B. (2014). Multicomponent and high entropy alloys. Entropy, 16(9), 4749-4768.
    [11] Cantor, B. (2020). Multicomponent high-entropy cantor alloys. Progress in Materials Science, 100754.
    [12] Gao, M. C., Yeh, J. W., Liaw, P. K., & Zhang, Y. (2016). High-entropy alloys. Cham: Springer International Publishing.
    [13] Woo, W., Huang, E. W., Yeh, J. W., Choo, H., Lee, C., & Tu, S. Y. (2015). In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy. Intermetallics, 62, 1-6.
    [14] Huang, S., Li, W., Lu, S., Tian, F., Shen, J., Holmström, E., & Vitos, L. (2015). Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Materialia, 108, 44-47.
    [15] Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., & George, E. P. (2013). The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 61(15), 5743-5755.
    [16] Otto, F., Dlouhý, A., Pradeep, K. G., Kuběnová, M., Raabe, D., Eggeler, G., & George, E. P. (2016). Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Materialia, 112, 40-52.
    [17] Cho, K., Fujioka, Y., Nagase, T., & Yasuda, H. Y. (2018). Grain refinement of non-equiatomic Cr-rich CoCrFeMnNi high-entropy alloys through combination of cold rolling and precipitation of σ phase. Materials Science and Engineering: A, 735, 191-200.
    [18] Orowan, E. (1948, October). Discussion on internal stresses. In Symposium on internal stresses in metals and alloys (pp. 451-453). Institute of Metals London.
    [19] Hill, R., & Rice, J. R. (1972). Constitutive analysis of elastic-plastic crystals at arbitrary strain. Journal of the Mechanics and Physics of Solids, 20(6), 401-413.
    [20] Guan, Y., Chen, B., Zou, J., Britton, T. B., Jiang, J., & Dunne, F. P. (2017). Crystal plasticity modelling and HR-DIC measurement of slip activation and strain localization in single and oligo-crystal Ni alloys under fatigue. International Journal of Plasticity, 88, 70-88.
    [21] Asaro, R. J. (1983). Crystal plasticity.
    [22] Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D. D., Bieler, T. R., & Raabe, D. (2010). Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Materialia, 58(4), 1152-1211.
    [23]Khadyko, M., Myhr, O. R., Dumoulin, S., & Hopperstad, O. S. (2016). A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys. Philosophical Magazine, 96(11), 1047-1072.
    [24] Marin, E. B. (2006). On the formulation of a crystal plasticity model (No.SAND2006-4170). Sandia National Laboratories.
    [25]C.H,Yu.(2021). Micromechanical Study of Strengthening Mechanisms for Ti65(AlCrNb)35 Medium-Entropy Alloy
    [26]黃冠樺. (2020). 利用晶體塑性有限元素法分析 Ti65(AlCrNb)35 中熵合金的強化機制與力學行為
    [27] Taylor, G. I. (1934). The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 145(855), 362-387.
    [28] Abaqus.,(2018) “Abaqus analysis user’s manual Vol. 3 Materials.,” Dassault Systèmes Simulia..
    [29] Ling, X., Horstemeyer, M. F., & Potirniche, G. P. (2005). On the numerical implementation of 3D rate‐dependent single crystal plasticity formulations. International Journal for Numerical Methods in Engineering, 63(4), 548-568.
    [30] 鄭翊良(2020). 以差排密度之強化晶體塑性模型分析鋁合金之析出硬化
    [31] Groeber, M. A., & Jackson, M. A. (2014). DREAM. 3D: a digital representation environment for the analysis of microstructure in 3D. Integrating materials and manufacturing innovation, 3(1), 56-72.
    [32] Haglund, A., Koehler, M., Catoor, D., George, E. P., & Keppens, V. (2015). Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures. Intermetallics, 58, 62-64.
    [33] Lee, S., Duarte, M. J., Feuerbacher, M., Soler, R., Kirchlechner, C., Liebscher, C. H., ... & Dehm, G. (2020). Dislocation plasticity in FeCoCrMnNi high-entropy alloy: quantitative insights from in situ transmission electron microscopy deformation. Materials Research Letters, 8(6), 216-224.
    [34] Groh, S., Marin, E. B., Horstemeyer, M. F., & Zbib, H. M. (2009). Multiscale modeling of the plasticity in an aluminum single crystal. International Journal of Plasticity, 25(8), 1456-1473.
    [35] Shabani, M., Indeck, J., Hazeli, K., Jablonski, P. D., & Pataky, G. J. (2019). Effect of strain rate on the tensile behavior of cocrfeni and cocrfemnni high-entropy alloys. Journal of Materials Engineering and Performance, 28(7), 4348-4356.

    下載圖示 校內:2024-08-11公開
    校外:2024-08-11公開
    QR CODE