簡易檢索 / 詳目顯示

研究生: 李仁傑
Lee, Zen-jie
論文名稱: 鈸型結構壓電換能器之聲場模擬分析與實作
The Implementation and Analysis Of Cymbal Transducer
指導教授: 涂季平
TOO, Gee-Pinn
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 60
中文關鍵詞: 有限元素分析鈸型結構壓電換能器聲場模擬分析
外文關鍵詞: Cymbal transducer, Finite element analysis, Acoustic field response analysis
相關次數: 點閱:54下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文對壓電陶瓷元件與金屬所製成的鈸型結構壓電換能器進行研究,設計製作水下探測、定位、通訊研究所需的聲源。研究工作分成三個部分,分別是機構設計與系統建模、電腦模擬輻射聲場計算、以及換能器製作與測試。

    在理論方面採用有限元素法分析換能器的結構振動,以有限元素軟體模擬進行模態分析與簡諧分析,分別計算出系統自然頻率與結構位移等資訊。最後將解題結果檔資訊匯入聲學計算軟體Virtual Lab Acoustic,採用邊界元素法運用赫姆霍茲積分方程式計算換能器的輻射聲場。

    換能器製作選定壓電陶瓷片作為驅動元件,黃銅片作為鈸帽材質,製造鈸型結構換能器,並結合聲場量測系統,測試自製換能器的性能。藉由聲源強度、頻譜圖與指向性分佈圖評估換能器的特性,並與模擬結果做比較,掌握換能器的設計與分析能力。

    關鍵字:鈸型結構壓電換能器,有限元素分析,聲場模擬分析。

    This thesis investigates a new type of piezoelectric composite transducer ,which called Cymbal transducer. The investigation covers theoretical simulation, fabrication, and experimentation measurement.

    The Cymbal transducer was designed with the finite element method(FEM). Using the FEM software to compute the natural frequency and displacement information of Cymbal transducer respectively by ANSYS modal analysis and harmonic analysis. Finally, this study imported the results into the LMS Virtual Lab Acoustic software, which is using boundary element method(BEM) and Helmholtz integral equation to compute the radiation sound field.

    The fabrication of transducer selected piezoelectric ceramics as the drive components r, brass as cymbal cap, manufactured the cymbal transducer, and combined the sound field measurement system to test the performance of transducer. Experimental parameters of the test includes the frequency spectrum, sound source intensity, and beam pattern, and compared with the simulation results to grasp transducer design and analysis capabilities.

    摘要......................................................I 英文摘要................................................. II 誌謝.................................................... III 目錄......................................................IV 圖目錄.................................................VII 表目錄....................................................IX 符號對照表.................................................X 第一章 緒論...............................................1 1.1 研究背景與動機.........................................1 1.2 文獻回顧...............................................2 1.3 論文架構...............................................5 第二章 理論基礎.......................................... 6 2.1 壓電材料的特性........................................ 6 2.2 壓電方程式.............................................8 2.3 鈸型換能器的數學模型................................. 11 2.4 基本聲學理論......................................... 14 第三章 電腦模擬分析......................................18 3.1 有限元素法簡介........................................20 3.2 基於有限元素法鈸型換能器的模擬設置....................20 3.3 結構參數對鈸型換能器自然頻率的影響....................22 3.3.1 金屬帽厚度H1對自然頻率的影響....................23 3.3.2 金屬帽頂端直徑R1對自然頻率的影響................24 3.3.3 壓電片厚度H2對自然頻率的影響....................25 3.3.4 空腔底部直徑R2對自然頻率的影響..................26 3.3.5 空腔高度H3對自然頻率的影響......................27 3.3.6 壓電片直徑R3對自然頻率的影響....................28 3.4 ANSYS計算鈸型換能器結構位移量.........................29 3.5 Virtual Lab Acoustic聲學軟體簡介......................37 3.6 Virtual Lab計算鈸型換能器的輻射聲場...................37 第四章 實驗架構與量測................................... 42 4.1 鈸型換能器的製作..................................... 42 4.2 換能器的輻射聲場量測實驗架構......................... 47 4.3 實驗儀器與設備....................................... 48 4.4 實驗結果..............................................51 4.4.1 自然頻率之量測..................................52 4.4.2 輻射聲場之指向性量測............................53 4.4.3 聲壓變化圖......................................54 4.5 實驗結果與模擬數值之比較..............................55 第五章 結論與未來展望................................... 56 5.1 結果討論.............................................56 5.2 未來展望.............................................57 參考文獻..................................................58

    [1] 汪建民,陶瓷技術手冊,經濟部技術處發行,中華民國產業科技發展協進會與中華民國粉末冶金協會出版,1994年。
    [2] Eiichi Fukada, History and Recent Progress in Piezoelectric Polymers ,The Institute of Electrical and Electronics Engineers Inc,2000。
    [3] Q. C. Xu, S. Yoshikawa, J. R. Belsick, and R. E. Newnham, Piezoelectric composites with high sensitivity and high capacitance for use at high pressures IEEE Trans. Ultrason., Ferro- elect., Freq. Contr., vol. 38, no. 6, pp. 634–639, 1991。
    [4] J. F. Tressler, A. Dogan, J. F. Fernandez, J. T. Fielding Jr., K. Uchino, and R. E. Newnham, Capped Ceramic Hydrophones, in 1995 IEEE Ultrasonics Symposium Proceedings, edited by M. Levy, S. C. Schneider, and B. R. McAvoy , IEEE , Piscataway, NJ, pp. 897-900,1995。
    [5] J. F. Tressler, R. E. Newnham, and W. J. Hughes,Capped ceramic underwater sound projector: The ‘cymbal’ transducer, J. Acoust. Soc. Amer., Vol. 105, No. 2, pp. 591-600, 1999。
    [6] J. Zhang, W. Jack Hughes, R.J. Meyer Jr., Kenji Uchino, and Robert E. Newnham,Cymbal array: a broad band sound projector, Ultrasonics, Vol.37, pp.523–529, 2000。
    [7] J. Zhang, A.C. Hladky-Hennion, W. Jack Hughes, and R. E. Newnham, “Modeling and Underwater Characterization of Cymbal Transducers and Arrays,” IEEE Transactions On Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 48, No. 2, pp.560–568 , 2001。
    [8] J.F. Tressler, T.R. Howarth, and D. Huang, “A comparison of the underwater acoustic performance of single crystal versus piezoelectric ceramic-based ‘cymbal’ projectors,” J. Acoust. Soc. Amer., Vol. 119, No.2, pp.879-889, 2006。
    [9] Yinglin Ke, Tong Guo, and Jiangxiong Li, "A New-Style, Slotted-Cymbal Transducer with Large Displacement and High Energy Transmission," IEEE Transactions On Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 51, No. 9, pp.1171-1177, 2004。
    [10] IEEE Standard on Piezpelectricity, IEEE Trans. Son. Ultrasonic ,vol. SU-31,no.2, 1984。
    [11] James F .Tressler, Wenwu Cao, Kenji Uchino, and Robert E. Newham Ceramic-Metal composite transducers for underwater acoustic applications ,07803-3355-1/96 IEEE,pp.561-564,1996。
    [12] 周卓明,壓電力學,全華科技圖書股份有限公司,2003年。
    [13] 宋家驥,超音波換能器陣元之動態模擬、製造及量測,國科會研究計畫成果報告,NSC 87-2213-E-002-076,1998年。
    [14] 宋家驥,聲納換能器設計(I),國科會研究計畫成果報告,NSC 88-2611-E-002-016,1999年。
    [15] 宋家驥,聲納換能器探頭測試及製作,國科會研究計畫成果報告,NSC 89-2611-E-002-047,2001年。
    [16] 宋家驥,壓電超音波換能器脈衝發射∕接收裝置設計,國科會研究計畫成果報告,NSC 92-2622-E-002-042-CC3,2004年。
    [17] 林武文,低頻寬頻帶水下換能器之研究(一),國科會研究計畫成果報告,NSC 90-2611-E-132-002,2002年。
    [18] 林武文,低頻寬頻帶水下換能器之研究(二),國科會研究計畫成果報告,NSC 91-2611-E-132-001,2003年。
    [19] A. Dogan, A.E. Uzgur, Z.O. Yazici, Anne-Christine Hladky-Hennion, “Optimizing Mechanical Quality Factor of Cymbal Transducer,” Ferroelectrics, Vol. 331, pp.65 – 71, 2006。
    [20] C.H. Sherman, Analysis of Acoustic Interactions in Transducer Arrays, IEEE Transactions on Sonics and Ultrasonics, Vol. 13, Issue 1, Mar., pp.9 – 15, 1966。
    [21] Sysnoise User’s Manual Rev.5.1,LMS International,1995。
    [22] Virtual.LAB Acoustic Rev 7B On-line help,LMS International,2007。
    [23] An Integrated Approach to Engine Radiated Acoustic,LMS International。
    [24] 李輝煌,ANSYS工程分析基礎與觀念,高立圖書有限公司,2005年。
    [25] 劉晉其,褚睛暉,有限元素分析與ANSYS的工程應用,滄海書局,2006年。
    [26] 陳精一,ANSYS振動學實務分析,高立圖書有限公司,九十四年。
    [27] 白明憲,聲學理論與應用,全華科技圖書有限公司,2001年。

    下載圖示 校內:2014-08-12公開
    校外:2019-08-12公開
    QR CODE