簡易檢索 / 詳目顯示

研究生: 傅立宇
Irwin Ivandi Puc
論文名稱: 縱向分析登革病毒感染後之細胞激素水平及造血幹細胞動員
Longitudinal analysis of cytokine and hematopoietic stem cells mobilization profiling in subsequent dengue infection
指導教授: 陳柏齡
Chen, Po-Lin
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 117
中文關鍵詞: 登革病毒疾病嚴重程度造血幹細胞動員生物標誌CD44 受體
外文關鍵詞: Dengue virus, Disease severity, HSCs mobilization, Biomarker, CD44 receptor
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革熱的臨床症狀具多樣性且不具特異性,導致疾病進展和結果難以預測。因此,藉由分析患者初次就醫時體內的細胞激素表現或許可以預測患者是否容易發展為重症登革熱。因此,在本研究中,我們檢測了23種細胞激素的變化,包括介白素(IL-1b, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IL-33)、細胞表面分子分化群(CD14, CD54, CD62E, CD62L, CD62p, CD106, CD121b, CD154, CD178)、顆粒球及單核球群落刺激生長因子(GM-CSF)、干擾素-γ (IFN-g)、巨噬細胞移動抑制因子 (MIF)、生長刺激表達基因2蛋白 (ST2)和腫瘤壞死因子 (TNF)等,探討可能用於預測登革熱疾病嚴重程度的生物標誌以利提供相關治療。在本研究中,介白素-10 (IL-10)被證明是登革熱潛在的診斷標誌 (分析控制組和登革熱患者之AUC = 0.944;分析控制組與非登革病毒引起之發燒患者之AUC = 0.969)。介白素-1第II型受體 (CD121b) 則被證明能夠預測登革熱的疾病嚴重程度 (分析登革患者有無警示徵象之AUC = 0.744;分析登革患者具警示徵象及重症登革患者之AUC = 0.775)。此外,我們也研究了登革熱患者在登革病毒感染期間體內的造血幹細胞及前驅細胞動員的情形。在正常情況下,造血幹細胞及前驅細胞會保留在骨髓內特化的利基微環境(niche)中,但在病原感染或有細胞壓力的情況下,造血幹細胞及前驅細胞則會被保護性的動員。從我們的結果顯示,隨著患者從登革輕症發展至更嚴重的登革疾病時,造血前驅細胞的動員及其歸巢 (homing)能力會下降。此外,我們發現造血前驅細胞不但容易受到登革病毒感染,並且在培養後還可以再產生具傳染能力的登革病毒。因此,我們認為造血幹細胞族群可能是登革病毒感染的首要目標並且對於後續的感染是至關重要的。我們也透過蛋白質體學的方式分析造血幹細胞可能的登革病毒受體,結果顯示 CD44分子可能在幹細胞被登革病毒感染時作為受體的角色。我們也利用CD44分子的抗體及玻尿酸配體以阻斷 CD44分子 ,結果發現在阻斷CD44分子之後登革病毒感染 的滴度有顯著降低的現象。
    從我們的研究中更加了解到在登革病毒感染的期間造血前驅細胞的重要性,有利於未來為登革熱患者制定良好的照護策略。此外,我們也提供了嶄新的觀點,認為介白素-10 (IL-10) 和介白素-1第II型受體 (CD121b) 可以分別作為診斷登革熱和預測登革熱疾病嚴重程度的生物標誌。

    Clinical presentations of dengue are diverse and non-specific, causing unpredictable progression and outcomes. Analyzing cytokine levels upon presentation can offer insights into whether a patient is prone to developing severe manifestations of dengue or not. Therefore, in this study, we first examined the signature profile change of 23 cytokines namely, IL-1b, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IL-33, CD14, CD54, CD62E, CD62L, CD62p, CD106, CD121b, CD154, CD178, GM-CSF, IFN-g, MIF, ST2 and TNF simultaneously with the intent to find possible biomarkers for effective dengue severity prognosis and intervention strategies. IL-10 demonstrated to be a potential diagnostic marker for dengue fever (Healthy and DENV+ group; AUC = 0.944, Healthy and OF group; AUC = 0.969). CD121b demonstrated to be predictive of the disease severity (DWoWS and DWWS group; AUC = 0.744, DWWS and SD group; AUC = 0.775). Furthermore, we investigated the hematopoietic stem and progenitor cells (HSPCs) mobilization in dengue patients during dengue virus (DENV). Under normal conditions, hematopoietic stem and progenitor cells (HSPCs) remain in specialized niches within the bone marrow but mobilize during an infection or stress condition as a protective response. Results demonstrated that the mobilization of HSPCs and their homing capacity decreased as the patients proceeded from mild dengue to a more severe form. Additionally, we showed that mobilizing HSPCs were not only permissive to DENV infection, but infectious DENV could be recovered after coculture. Finally, we showed that HSCs population were crucial for DENV infection and possibly the primary target for the virus. Identification of possible DENV receptors on HSCs population by proteomics revealed CD44 as putative DENV receptor in stem cells. Blocking of CD44 by antibody or ligand Hyuranic acid demonstrated a significant decrease in viral titer upon infection with DENV.
    Our findings underscore the importance of investigating HSPCs and its role during DENV to develop appropriate countermeasures. More importantly, we provide a new insight into IL-10 and CD121b as biomarkers for diagnosing dengue fever and predicting dengue disease severity stage, respectively.

    中文摘要 I Abstract III Acknowledgment V Contents VII List of Figures XII List of Tables XIV Abbreviation XV Chapter 1 Introduction 1 1. Dengue epidemiology 1 1.1 Dengue importance, distribution, and global burden 2 1.2 Dengue transmission 3 2. Dengue virus 4 2.1 Structure 5 2.2 Genetic diversity 6 3. Dengue pathogenesis 6 3.1 Implantation of virus and entry 7 3.2 Antibody-dependent enhancement (ADE) 8 3.3 Cytokine storm (Hypercytokinemia) 8 3.4 Cytokine as a biomarker 10 4. Dengue classification, clinical manifestation, and challenges 11 4.1 Dengue classification and manifestation 11 4.2 Bone marrow suppression and hematopoietic stem and progenitor cells (HSPCs) mobilization 12 4.3 Dengue management challenges 13 Chapter 2 Experimental designs 16 Chapter 3 Materials and methods 17 3.1 Materials 17 3.1.1 Cell lines and virus 17 3.1.1b Viruses 17 3.1.2 Antibodies 17 3.1.2a Flow cytometry 17 3.1.2b VOPBA antibodies 18 3.1.2c Magnetic beads 18 3.1.3 Reagents 19 3.1.4 Cell culture medium and buffers ingredients 21 3.1.4a Cell culture medium 21 3.1.4b Plaque assay medium 22 3.1.4c Flow cytometry buffers 22 3.1.4d Co-Immunoprecipitation buffers 23 3.1.4e VOPBA buffers 23 3.1.5 Equipments 24 3.1.6 Software 25 3.1.7 Databases 26 3.1.8 Algorithms 26 3.2 Methods 27 3.2.1 Study cohort and ethical statement 27 3.2.2 Dengue confirmatory test 28 3.2.3 Cytokine identification and quantification 28 3.2.4 White blood cells preparation 29 3.2.5 Flow cytometric analysis 29 3.2.6 Gating strategy for HSPCs, homing HSPCs, and DENV-infected or uninfected HSPCs 30 3.2.7 Fluorochrome conjugated DENV NS1 antibody 32 3.2.8 HSPCs isolation by magnetic bead isolation 32 3.2.9 Vital titration 33 3.2.10 Cell Culture (BHK-21, Vero cells, K-562 and HaCAT) 34 3.2.11 Cell membrane preparation and viral overlay protein binding assay (VOPBA) 34 3.2.13 Ultraviolet (UV) crosslinking and Co-immunoprecipitation (Co-IP) for protein identification 35 3.2.14 Decision tree algorithm 36 3.2.15 Statistical Analysis 36 Chapter 4 Results 37 4.1 Longitudinal cytokine profiling in associations with the disease 37 4.1.1 Hypercytokinaemia in dengue patients 37 4.1.2 Cytokine profiles distinguish between moderate and severe disease. 38 4.1.3 Perturbed cytokine profiles and signs of endothelial dysfunction at days of infection 39 4.2 Development and validation of the cytokine signature for diagnosis of dengue fever and discriminating between the disease severity 40 4.2.1 Identification of IL-10 as a potential diagnostic biomarker for dengue fever. 40 4.2.2 CD121b as a potential diagnostic biomarker for distinguishing the disease severity 41 4.2.3 Correlation of IL-10 and CD121b levels between age and DENV titer 41 4.2.4 IL-10 and CD121b performance and classification accuracy in discriminating Dengue fever, and dengue disease severity using rpart and CART algorithms 42 4.3 Mobilization of hematopoietic stem and progenitor cells (HSPCs) during DENV infection 43 4.3.1 Circulation of HSPCs decreased as the disease severity progressed 43 4.3.2 The mobilization capacity of HSPCs decreased as the disease severity progressed 44 4.3.3 HSPCs in dengue patients were permissive for DENV Infection 45 4.4 The importance of hematopoietic stem cells (HSCs) in dengue virus infection 46 4.4.1 HSCs were essential for DENV Infection in BM 47 4.4.2 Validating the importance of HSCs for DENV infection using cell line 48 4.5 Identification of possible DENV entry receptors on hematopoietic stem cells (HSCs) 48 4.5.1 CD9, CD63, CD44 and CD151 are potential entry receptors 49 4.5.2 Blocking of CD44 showed a decrease in viral titer upon infection with DENV infection 50 Chapter 5 Discussion 52 Longitudinal cytokine profiling in associations with the disease and biomarker identification 52 Mobilization of hematopoietic stem and progenitor cells (HSPCs) during DENV infection 57 The importance of hematopoietic stem cells (HSCs) in dengue virus infection 59 Chapter 6 Conclusion 63 Chapter 7 References 64 Chapter 8 Figures and tables 75 Main figures 75 Supplementary figures 98 Supplementary Tables 104 Chapter 9 Appendix 107 Chapter 10 Curriculum Vitae 115

    1. Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases. Nature. 2004. 430(6996): p.242-9.
    2. WHO. A brief guide to emerging infectious diseases and zoonoses. World Health Organization. 2014. Accessed on URL https://apps.who.int/iris/handle/10665/204722.
    3. Ebi KL, Nealon J. Dengue in a changing climate. Environmental Research. 2016. 151: p.115-23.
    4. WHO. Dengue and severe dengue. World Health Organization. 2022. Accessed on 10 September 2022. URL https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
    5. Horstick O, Tozan Y, Wilder-Smith A. Reviewing Dengue: Still a Neglected Tropical Disease? PLOS Neglected Tropical Diseases. 2015. 9(4): p.e0003632.
    6. WHO. Dengue guidelines for diagnosis, treatment, prevention and control : new edition. World Health Organization. 2012. Accessed on 17 September 2022. URL https://apps.who.int/iris/handle/10665/44188.
    7. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLOS Neglected Tropical Diseases. 2012. 6(8): p.e1760.
    8. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013. 496: p.504.
    9. Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: A Minireview. Viruses. 2020. 12(8).
    10. Rathakrishnan A, Wang SM, Hu Y, Khan AM, Ponnampalavanar S, Lum LCS, et al. Cytokine Expression Profile of Dengue Patients at Different Phases of Illness. PLOS ONE. 2012. 7(12): p.e52215.
    11. Chen R, Vasilakis N. Dengue--quo tu et quo vadis? Viruses. 2011. 3(9): p.1562-608.
    12. Guzmán MG, Kouri G, Bravo J, Valdes L, Vazquez S, Halstead SB. Effect of age on outcome of secondary dengue 2 infections. Int J Infect Dis. 2002. 6(2): p.118-24.
    13. Hung TM, Shepard DS, Bettis AA, Nguyen HA, McBride A, Clapham HE, et al. Productivity costs from a dengue episode in Asia: a systematic literature review. BMC Infectious Diseases. 2020. 20(1): p.393.
    14. Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015. 4: p.e08347.
    15. Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nature Reviews Disease Primers. 2016. 2: p.16055.
    16. Whitehead SS, Blaney JE, Durbin AP, Murphy BR. Prospects for a dengue virus vaccine. Nature Reviews Microbiology. 2007. 5(7): p.518-28.
    17. Kyle JL, Harris E. Global Spread and Persistence of Dengue. Annual Review of Microbiology. 2008. 62(1): p.71-92.
    18. Kasai S, Itokawa K, Uemura N, Takaoka A, Furutani S, Maekawa Y, et al. Discovery of super-insecticide-resistant dengue mosquitoes in Asia: Threats of concomitant knockdown resistance mutations. Sci Adv. 2022. 8(51): p.eabq7345.
    19. Gan SJ, Leong YQ, bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, et al. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasites & Vectors. 2021. 14(1): p.315.
    20. Callaway E. The mosquito strategy that could eliminate dengue. Nature. 2020.
    21. Schweitzer BK, Chapman NM, Iwen PC. Overview of the Flaviviridae With an Emphasis on the Japanese Encephalitis Group Viruses. Laboratory Medicine. 2009. 40(8): p.493-9.
    22. Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 2014. 22(3): p.138-46.
    23. Gurugama P, Garg P, Perera J, Wijewickrama A, Seneviratne S. Dengue viral infections. Indian Journal of Dermatology. 2010. 55(1): p.68-78.
    24. Malavige GN, Fernando S, Fernando DJ, Seneviratne SL. Dengue viral infections. Postgraduate Medical Journal. 2004. 80(948): p.588-601.
    25. Yung C-F, Lee K-S, Thein T-L, Tan L-K, Gan VC, Wong JGX, et al. Dengue Serotype-Specific Differences in Clinical Manifestation, Laboratory Parameters and Risk of Severe Disease in Adults, Singapore. The American Journal of Tropical Medicine and Hygiene. 2015. 92(5): p.999-1005.
    26. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nature Reviews Microbiology. 2010. 8: p.S7.
    27. Nasar S, Rashid N, Iftikhar S. Dengue proteins with their role in pathogenesis, and strategies for developing an effective anti-dengue treatment: A review. J Med Virol. 2020. 92(8): p.941-55.
    28. Byk LA, Gamarnik AV. Properties and Functions of the Dengue Virus Capsid Protein. Virology. 2016. 3(1): p.263-81.
    29. Perera R, Kuhn RJ. Structural proteomics of dengue virus. Current Opinion in Microbiology. 2008. 11(4): p.369-77.
    30. Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, Ball S, et al. Dengue Virus Inhibits Alpha Interferon Signaling by Reducing STAT2 Expression. Journal of Virology. 2005. 79(9): p.5414-20.
    31. Kelley JF, Kaufusi PH, Nerurkar VR. Dengue hemorrhagic fever-associated immunomediators induced via maturation of dengue virus nonstructural 4B protein in monocytes modulate endothelial cell adhesion molecules and human microvascular endothelial cells permeability. Virology. 2012. 422(2): p.326-37.
    32. Medin CL, Fitzgerald KA, Rothman AL. Dengue Virus Nonstructural Protein NS5 Induces Interleukin-8 Transcription and Secretion. Journal of Virology. 2005. 79(17): p.11053-61.
    33. Ludolfs D, Schilling S, Altenschmidt J, Schmitz H. Serological Differentiation of Infections with Dengue Virus Serotypes 1 to 4 by Using Recombinant Antigens. Journal of Clinical Microbiology. 2002. 40(11): p.4317-20.
    34. Fleith RC, Lobo FP, dos Santos PF, Rocha MM, Bordignon J, Strottmann DM, et al. Genome-wide analyses reveal a highly conserved Dengue virus envelope peptide which is critical for virus viability and antigenic in humans. Scientific Reports. 2016. 6(1): p.36339.
    35. Gallichotte EN, Baric TJ, Nivarthi U, Delacruz MJ, Graham R, Widman DG, et al. Genetic Variation between Dengue Virus Type 4 Strains Impacts Human Antibody Binding and Neutralization. Cell Rep. 2018. 25(5): p.1214-24.
    36. Vicente CR, Herbinger K-H, Fröschl G, Malta Romano C, de Souza Areias Cabidelle A, Cerutti Junior C. Serotype influences on dengue severity: a cross-sectional study on 485 confirmed dengue cases in Vitória, Brazil. BMC Infectious Diseases. 2016. 16(1): p.320.
    37. Jiang L, Liu Y, Su W, Cao Y, Jing Q, Wu X, et al. Circulation of genotypes of dengue virus serotype 2 in Guangzhou over a period of 20 years. Virology Journal. 2022. 19(1): p.47.
    38. Wang SF, Chang K, Loh EW, Wang WH, Tseng SP, Lu PL, et al. Consecutive large dengue outbreaks in Taiwan in 2014-2015. Emerg Microbes Infect. 2016. 5(12): p.e123.
    39. Poltep K, Phadungsombat J, Nakayama EE, Kosoltanapiwat N, Hanboonkunupakarn B, Wiriyarat W, et al. Genetic Diversity of Dengue Virus in Clinical Specimens from Bangkok, Thailand, during 2018–2020: Co-Circulation of All Four Serotypes with Multiple Genotypes and/or Clades. Tropical Medicine and Infectious Disease. 2021. 6(3): p.162.
    40. Remy MM. Dengue fever: theories of immunopathogenesis and challenges for vaccination. Inflamm Allergy Drug Targets. 2014. 13(4): p.262-74.
    41. Martina BE, Koraka P, Osterhaus AD. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev. 2009. 22(4): p.564-81.
    42. Maginnis MS. Virus-Receptor Interactions: The Key to Cellular Invasion. J Mol Biol. 2018. 430(17): p.2590-611.
    43. Kalia M, Jameel S. Virus entry paradigms. Amino Acids. 2011. 41(5): p.1147-57.
    44. Dimitrov DS. Virus entry: molecular mechanisms and biomedical applications. Nature Reviews Microbiology. 2004. 2(2): p.109-22.
    45. Casasnovas JM. Virus-receptor interactions and receptor-mediated virus entry into host cells. Subcell Biochem. 2013. 68: p.441-66.
    46. Cruz-Oliveira C, Freire JM, Conceição TM, Higa LM, Castanho MARB, Da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiology Reviews. 2015. 39(2): p.155-70.
    47. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med. 2003. 197(7): p.823-9.
    48. Germi R, Crance J-M, Garin D, Guimet J, Lortat-Jacob H, Ruigrok RWH, et al. Heparan Sulfate-Mediated Binding of Infectious Dengue Virus Type 2 and Yellow Fever Virus. Virology. 2002. 292(1): p.162-8.
    49. Miller JL, deWet BJM, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, et al. The Mannose Receptor Mediates Dengue Virus Infection of Macrophages. PLOS Pathogens. 2008. 4(2): p.e17.
    50. Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol. 2020. 20(10): p.633-43.
    51. Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nature Reviews Immunology. 2011. 11: p.532.
    52. Kurane I, Ennis FA. Cytokines in dengue virus infections: role of cytokines in the pathogenesis of dengue hemorrhagic fever. Seminars in Virology. 1994. 5(6): p.443-8.
    53. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2014. 1843(11): p.2563-82.
    54. Shukla R, Ramasamy V, Shanmugam RK, Ahuja R, Khanna N. Antibody-Dependent Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Frontiers in Cellular and Infection Microbiology. 2020. 10.
    55. Chaturvedi UC, Agarwal R, Elbishbishi EA, Mustafa AS. Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunology & Medical Microbiology. 2000. 28(3): p.183-8.
    56. Srikiatkhachorn A, Green S. Markers of Dengue Disease Severity. In: Rothman AL, editor. Dengue Virus. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 67-82.
    57. Patro ARK, Mohanty S, Prusty BK, Singh DK, Gaikwad S, Saswat T, et al. Cytokine Signature Associated with Disease Severity in Dengue. Viruses. 2019. 11(1): p.34.
    58. Yong YK, Wong WF, Vignesh R, Chattopadhyay I, Velu V, Tan HY, et al. Dengue Infection - Recent Advances in Disease Pathogenesis in the Era of COVID-19. Front Immunol. 2022. 13: p.889196.
    59. Flores-Mendoza LK, Estrada-Jiménez T, Sedeño-Monge V, Moreno M, Manjarrez MdC, González-Ochoa G, et al. IL-10 and socs3 Are Predictive Biomarkers of Dengue Hemorrhagic Fever. Mediators of Inflammation. 2017. 2017: p.5197592.
    60. Naranjo-Gómez JS, Castillo JA, Rojas M, Restrepo BN, Diaz FJ, Velilla PA, et al. Different phenotypes of non-classical monocytes associated with systemic inflammation, endothelial alteration and hepatic compromise in patients with dengue. Immunology. 2019. 156(2): p.147-63.
    61. Singla M, Kar M, Sethi T, Kabra SK, Lodha R, Chandele A, et al. Immune Response to Dengue Virus Infection in Pediatric Patients in New Delhi, India—Association of Viremia, Inflammatory Mediators and Monocytes with Disease Severity. PLOS Neglected Tropical Diseases. 2016. 10(3): p.e0004497.
    62. Juffrie M, van Der Meer GM, Hack CE, Haasnoot K, Sutaryo, Veerman AJ, et al. Inflammatory mediators in dengue virus infection in children: interleukin-8 and its relationship to neutrophil degranulation. Infect Immun. 2000. 68(2): p.702-7.
    63. Raghupathy R, Chaturvedi UC, Al-Sayer H, Elbishbishi EA, Agarwal R, Nagar R, et al. Elevated levels of IL-8 in dengue hemorrhagic fever. Journal of Medical Virology. 1998. 56(3): p.280-5.
    64. Meena AA, Murugesan A, Sopnajothi S, Yong YK, Ganesh PS, Vimali IJ, et al. Increase of Plasma TNF-α Is Associated with Decreased Levels of Blood Platelets in Clinical Dengue Infection. Viral Immunology. 2019. 33(1): p.54-60.
    65. Lee YR, Liu MT, Lei HY, Liu CC, Wu JM, Tung YC, et al. MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. J Gen Virol. 2006. 87(Pt 12): p.3623-30.
    66. John DV, Lin Y-S, Perng GC. Biomarkers of severe dengue disease - a review. Journal of biomedical science. 2015. 22: p.83-.
    67. Pradeep SP, Hoovina Venkatesh P, Manchala NR, Vayal Veedu A, Basavaraju RK, Selvasundari L, et al. Innate Immune Cytokine Profiling and Biomarker Identification for Outcome in Dengue Patients. Front Immunol. 2021. 12: p.677874.
    68. Poole-Smith BK, Gilbert A, Gonzalez AL, Beltran M, Tomashek KM, Ward BJ, et al. Discovery and characterization of potential prognostic biomarkers for dengue hemorrhagic fever. The American journal of tropical medicine and hygiene. 2014. 91(6): p.1218-26.
    69. Imad HA, Phumratanaprapin W, Phonrat B, Chotivanich K, Charunwatthana P, Muangnoicharoen S, et al. Cytokine Expression in Dengue Fever and Dengue Hemorrhagic Fever Patients with Bleeding and Severe Hepatitis. The American Journal of Tropical Medicine and Hygiene. 2020. 102(5): p.943-50.
    70. Dayarathna S, Jeewandara C, Gomes L, Somathilaka G, Jayathilaka D, Vimalachandran V, et al. Similarities and differences between the ‘cytokine storms’ in acute dengue and COVID-19. Scientific Reports. 2020. 10(1): p.19839.
    71. WHO. Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever Revised and expanded 2011. World Health Organization. 2011. Accessed on 02 November 2022. URL https://apps.who.int/iris/handle/10665/204894.
    72. Clyde K, Kyle JL, Harris E. Recent Advances in Deciphering Viral and Host Determinants of Dengue Virus Replication and Pathogenesis. Journal of Virology. 2006. 80(23): p.11418-31.
    73. WHO. Dengue guidelines for diagnosis, treatment, prevention and control: new edition. World Health Organization. 2009. Accessed on 17 September 2022. URL https://www.who.int/publications/i/item/9789241547871.
    74. Vogt MB, Lahon A, Arya RP, Spencer Clinton JL, Rico-Hesse R. Dengue viruses infect human megakaryocytes, with probable clinical consequences. PLOS Neglected Tropical Diseases. 2019. 13(11): p.e0007837.
    75. Manz MG, Boettcher S. Emergency granulopoiesis. Nature Reviews Immunology. 2014. 14(5): p.302-14.
    76. Blokzijl-Franke S, Ponsioen B, Schulte-Merker S, Herbomel P, Kissa K, Choorapoikayil S, et al. Phosphatidylinositol-3 kinase signaling controls survival and stemness of hematopoietic stem and progenitor cells. Oncogene. 2021. 40(15): p.2741-55.
    77. Pascutti MF, Erkelens MN, Nolte MA. Impact of Viral Infections on Hematopoiesis: From Beneficial to Detrimental Effects on Bone Marrow Output. Front Immunol. 2016. 7: p.364.
    78. Lu X-J, Chen Q, Rong Y-J, Chen J. Mobilisation and dysfunction of haematopoietic stem/progenitor cells after Listonella anguillarum infection in ayu, Plecoglossus altivelis. Scientific Reports. 2016. 6(1): p.28082.
    79. Burberry A, Zeng MY, Ding L, Wicks I, Inohara N, Morrison SJ, et al. Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling. Cell Host Microbe. 2014. 15(6): p.779-91.
    80. Kwon SG, Park I, Kwon YW, Lee TW, Park GT, Kim JH. Role of stem cell mobilization in the treatment of ischemic diseases. Arch Pharm Res. 2019. 42(3): p.224-31.
    81. Lapidot T, Petit I. Current understanding of stem cell mobilization: The roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Experimental Hematology. 2002. 30(9): p.973-81.
    82. Barletta ABF, Alves ESTL, Talyuli OAC, Luna-Gomes T, Sim S, Angleró-Rodríguez Y, et al. Prostaglandins regulate humoral immune responses in Aedes aegypti. PLoS Negl Trop Dis. 2020. 14(10): p.e0008706.
    83. Hoggatt J, Singh P, Hoggatt A, Speth JM, Pelus LM. Inhibition of Prostaglandin E2 (PGE2) Signaling by Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) or EP4 Receptor Antagonism Expands Hematopoietic Stem and Progenitor Cells (HSPC) and Enhances Their Mobilization to Peripheral Blood in Mice and Baboons. Blood. 2009. 114(22): p.84-.
    84. Zhao JL, Baltimore D. Regulation of stress-induced hematopoiesis. Curr Opin Hematol. 2015. 22(4): p.286-92.
    85. WHO. Handbook for clinical management of dengue. World Health Organization. 2012. Accessed on 20 january 2023. URL https://www.who.int/publications/i/item/9789241504713.
    86. Chan M, Johansson MA. The Incubation Periods of Dengue Viruses. PLOS ONE. 2012. 7(11): p.e50972.
    87. Thein T-L, Gan VC, Lye DC, Yung C-F, Leo Y-S. Utilities and Limitations of the World Health Organization 2009 Warning Signs for Adult Dengue Severity. PLOS Neglected Tropical Diseases. 2013. 7(1): p.e2023.
    88. Wallace D, Canouet V, Garbes P, Wartel TA. Challenges in the clinical development of a dengue vaccine. Current Opinion in Virology. 2013. 3(3): p.352-6.
    89. Ghosh A, Dar L. Dengue vaccines: Challenges, development, current status and prospects. Expert Review of Vaccines. 2015. 33(1): p.3-15.
    90. McArthur MA, Sztein MB, Edelman R. Dengue vaccines: recent developments, ongoing challenges and current candidates. Expert review of vaccines. 2013. 12(8): p.933-53.
    91. Thomas SJ, Yoon I-K. A review of Dengvaxia®: development to deployment. Human Vaccines & Immunotherapeutics. 2019. 15(10): p.2295-314.
    92. Roehrig JT, Hombach J, Barrett AD. Guidelines for Plaque-Reduction Neutralization Testing of Human Antibodies to Dengue Viruses. Viral Immunol. 2008. 21(2): p.123-32.
    93. Jindadamrongwech S, Smith DR. Virus Overlay Protein Binding Assay (VOPBA) reveals serotype specific heterogeneity of dengue virus binding proteins on HepG2 human liver cells. Intervirology. 2004. 47(6): p.370-3.
    94. Mercado-Curiel R, Esquinca-Avilés H, Tovar-Gallegos R, Diaz-Badillo A, Camacho-Nuez M, Munoz MDL. The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells. BMC microbiology. 2006. 6: p.85.
    95. Green S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Suntayakorn S, Nisalak A, et al. Early Immune Activation in Acute Dengue Illness Is Related to Development of Plasma Leakage and Disease Severity. The Journal of Infectious Diseases. 1999. 179(4): p.755-62.
    96. Pang T, Cardosa MJ, Guzman MG. Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol Cell Biol. 2007. 85(1): p.43-5.
    97. Couper KN, Blount DG, Riley EM. IL-10: The Master Regulator of Immunity to Infection. The Journal of Immunology. 2008. 180(9): p.5771-7.
    98. Inyoo S, Suttitheptumrong A, Pattanakitsakul SN. Synergistic Effect of TNF-α and Dengue Virus Infection on Adhesion Molecule Reorganization in Human Endothelial Cells. Jpn J Infect Dis. 2017. 70(2): p.186-91.
    99. Nervi B, Link DC, DiPersio JF. Cytokines and hematopoietic stem cell mobilization. J Cell Biochem. 2006. 99(3): p.690-705.
    100. de Kruijf EFM, Fibbe WE, van Pel M. Cytokine-induced hematopoietic stem and progenitor cell mobilization: unraveling interactions between stem cells and their niche. Ann N Y Acad Sci. 2020. 1466(1): p.24-38.
    101. Alexeev V, Donahue A, Uitto J, Igoucheva O. Analysis of chemotactic molecules in bone marrow-derived mesenchymal stem cells and the skin: Ccl27-Ccr10 axis as a basis for targeting to cutaneous tissues. Cytotherapy. 2013. 15(2): p.171-84.e1.
    102. Inokuma D, Abe R, Fujita Y, Sasaki M, Shibaki A, Nakamura H, et al. CTACK/CCL27 accelerates skin regeneration via accumulation of bone marrow-derived keratinocytes. Stem Cells. 2006. 24(12): p.2810-6.
    103. Kolb-Mäurer A, Goebel W. Susceptibility of hematopoietic stem cells to pathogens: role in virus/bacteria tropism and pathogenesis. FEMS Microbiol Lett. 2003. 226(2): p.203-7.
    104. Correa ARV, Berbel ACER, Papa MP, Morais ATSd, Peçanha LMT, Arruda LBd. Dengue Virus Directly Stimulates Polyclonal B Cell Activation. PLOS ONE. 2015. 10(12): p.e0143391.
    105. Fu Y, Chen YL, Herve M, Gu F, Shi PY, Blasco F. Development of a FACS-based assay for evaluating antiviral potency of compound in dengue infected peripheral blood mononuclear cells. J Virol Methods. 2014. 196: p.18-24.
    106. Massumoto CM, Mizukami S, Campos MF, Silva LA, Mendrone Júnior A, Sakashita A, et al. [Cryopreservation of bone marrow and peripheral blood stem cells using a controlled rate freezing system: experience with 86 procedures]. Rev Assoc Med Bras (1992). 1997. 43(2): p.93-8.
    107. Grabbe J, Welker P, Rosenbach T, Nürnberg W, Krüger-Krasagakes S, Artuc M, et al. Release of stem cell factor from a human keratinocyte line, HaCaT, is increased in differentiating versus proliferating cells. J Invest Dermatol. 1996. 107(2): p.219-24.
    108. Tao K, Bai XZ, Zhang ZF, Shi JH, Hu XL, Tang CW, et al. Construction of the tissue engineering seed cell (HaCaT–EGF) and analysis of its biological characteristics. Asian Pacific Journal of Tropical Medicine. 2013. 6(11): p.893-6.
    109. Souza TdFGd, Pierdoná TM, Macedo FS, Aquino PEAd, Rangel GdFP, Duarte RS, et al. Human keratinocyte (HaCaT) stimulation and healing effect of the methanol fraction from the decoction from leaf from <em>Sideroxylon obtusifolium</em> (Roem. &amp; Schult.) T.D. Penn on experimental burn wound model. bioRxiv. 2020. p.2020.03.29.013839.
    110. Molejon MI, Tellechea JI, Moutardier V, Gasmi M, Ouaissi M, Turrini O, et al. Targeting CD44 as a novel therapeutic approach for treating pancreatic cancer recurrence. Oncoscience. 2015. 2(6): p.572-5.
    111. Ponta H, Sherman L, Herrlich PA. CD44: From adhesion molecules to signalling regulators. Nature Reviews Molecular Cell Biology. 2003. 4(1): p.33-45.
    112. Quéré R, Andradottir S, Brun ACM, Zubarev RA, Karlsson G, Olsson K, et al. High levels of the adhesion molecule CD44 on leukemic cells generate acute myeloid leukemia relapse after withdrawal of the initial transforming event. Leukemia. 2010. 25: p.515.
    113. Bhat-Nakshatri P, Goswami CP, Badve S, Sledge Jr GW, Nakshatri H. Identification of FDA-approved Drugs Targeting Breast Cancer Stem Cells Along With Biomarkers of Sensitivity. Scientific Reports. 2013. 3: p.2530.
    114. Murakami T, Kim J, Li Y, Green GE, Shikanov A, Ono A. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nature Communications. 2018. 9(1): p.2436.
    115. Kondo Y, Machida K, Liu HM, Ueno Y, Kobayashi K, Wakita T, et al. Hepatitis C virus infection of T cells inhibits proliferation and enhances fas-mediated apoptosis by down-regulating the expression of CD44 splicing variant 6. J Infect Dis. 2009. 199(5): p.726-36.
    116. Freistadt MS, Eberle KE. CD44 Is Not Required for Poliovirus Replication in Cultured Cells and Does Not Limit Replication in Monocytes. Virology. 1996. 224(2): p.542-7.
    117. Malavige GN, Gomes L, Alles L, Chang T, Salimi M, Fernando S, et al. Serum IL-10 as a marker of severe dengue infection. BMC Infectious Diseases. 2013. 13(1): p.341.
    118. Trifunović J, Miller L, Debeljak Ž, Horvat V. Pathologic patterns of interleukin 10 expression – A review. Biochemia Medica. 2014.
    119. Malavige GN, Jeewandara C, Alles KML, Salimi M, Gomes L, Kamaladasa A, et al. Suppression of Virus Specific Immune Responses by IL-10 in Acute Dengue Infection. PLOS Neglected Tropical Diseases. 2013. 7(9): p.e2409.
    120. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018. 281(1): p.8-27.
    121. Peters VA, Joesting JJ, Freund GG. IL-1 receptor 2 (IL-1R2) and its role in immune regulation. Brain Behav Immun. 2013. 32: p.1-8.
    122. Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev. 2018. 281(1): p.57-61.
    123. Groves RW, Sherman L, Mizutani H, Dower SK, Kupper TS. Detection of interleukin-1 receptors in human epidermis. Induction of the type II receptor after organ culture and in psoriasis. Am J Pathol. 1994. 145(5): p.1048-56.
    124. Sehrawat P, Biswas A, Kumar P, Singla P, Wig N, Dar L, et al. Role of Cytokines as Molecular Marker of Dengue Severity. Mediterr J Hematol Infect Dis. 2018. 10(1): p.e2018023-e.
    125. Vervaeke P, Vermeire K, Liekens S. Endothelial dysfunction in dengue virus pathology. Rev Med Virol. 2015. 25(1): p.50-67.
    126. Chunhakan S, Butthep P, Yoksan S, Tangnararatchakit K, Chuansumrit A. Vascular leakage in dengue hemorrhagic Fever is associated with dengue infected monocytes, monocyte activation/exhaustion, and cytokines production. Int J Vasc Med. 2015. 2015: p.917143.
    127. Schulz C, Perdiguero EG, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells. Science. 2012. 336(6077): p.86-90.
    128. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nature Reviews Immunology. 2006. 6(2): p.93-106.
    129. Skirecki T, Mikaszewska-Sokolewicz M, Godlewska M, Dołęgowska B, Czubak J, Hoser G, et al. Mobilization of Stem and Progenitor Cells in Septic Shock Patients. Scientific Reports. 2019. 9(1): p.3289.
    130. Sridharan A, Chen Q, Tang KF, Ooi EE, Hibberd ML, Chen J. Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. J Virol. 2013. 87(21): p.11648-58.
    131. Liu YF, Zhang SY, Chen YY, Shi K, Zou B, Liu J, et al. ICAM-1 Deficiency in the Bone Marrow Niche Impairs Quiescence and Repopulation of Hematopoietic Stem Cells. Stem Cell Reports. 2018. 11(1): p.258-73.
    132. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005. 201(8): p.1307-18.
    133. Lévesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood. 2001. 98(5): p.1289-97.
    134. Vats A, Ho TC, Puc I, Chen YJ, Chang CH, Chien YW, et al. Evidence that hematopoietic stem cells in human umbilical cord blood is infectable by dengue virus: proposing a vertical transmission candidate. Heliyon. 2021. 7(4): p.e06785.
    135. Basu A, Jain P, Gangodkar SV, Shetty S, Ghosh K. Dengue 2 virus inhibits in vitro megakaryocytic colony formation and induces apoptosis in thrombopoietin-inducible megakaryocytic differentiation from cord blood CD34+ cells. FEMS Immunol Med Microbiol. 2008. 53(1): p.46-51.
    136. Costantini A, Giuliodoro S, Mancini S, Butini L, Regnery CM, Silvestri G, et al. Impaired in-vitro growth of megakaryocytic colonies derived from CD34 cells of HIV-1-infected patients with active viral replication. Aids. 2006. 20(13): p.1713-20.
    137. Noisakran S, Onlamoon N, Hsiao HM, Clark KB, Villinger F, Ansari AA, et al. Infection of bone marrow cells by dengue virus in vivo. Exp Hematol. 2012. 40(3): p.250-9.e4.
    138. Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y. CD44 in cancer. Crit Rev Clin Lab Sci. 2002. 39(6): p.527-79.
    139. Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. Journal of Hematology & Oncology. 2018. 11(1): p.64.
    140. Martincuks A, Li PC, Zhao Q, Zhang C, Li YJ, Yu H, et al. CD44 in Ovarian Cancer Progression and Therapy Resistance-A Critical Role for STAT3. Front Oncol. 2020. 10: p.589601.
    141. Yu Q, Stamenkovic I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 1999. 13(1): p.35-48.
    142. Tang TH, Alonso S, Ng LF, Thein TL, Pang VJ, Leo YS, et al. Increased Serum Hyaluronic Acid and Heparan Sulfate in Dengue Fever: Association with Plasma Leakage and Disease Severity. Sci Rep. 2017. 7: p.46191.
    143. Lin CY, Kolliopoulos C, Huang CH, Tenhunen J, Heldin CH, Chen YH, et al. High levels of serum hyaluronan is an early predictor of dengue warning signs and perturbs vascular integrity. EBioMedicine. 2019. 48: p.425-41.

    下載圖示 校內:2024-08-14公開
    校外:2024-08-14公開
    QR CODE