| 研究生: |
李國豪 Lee, Kuo-Hao |
|---|---|
| 論文名稱: |
呼吸道內氣體與細懸浮微粒(PM2.5)兩相流之數值研究 Numerical Study of Gas and PM2.5 Two-phase Flow in Airway Models |
| 指導教授: |
黃啟鐘
Hwang, Chii-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | PM2.5 、分歧管 、氣喘 、暫態流 、兩相流 |
| 外文關鍵詞: | PM2.5, airway, asthma, transient flow, two phase flow |
| 相關次數: | 點閱:168 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細懸浮微粒(PM2.5)常吸附有毒物質隨呼吸系統進入人體,此將造成健康的危害。近年來臺灣常聽聞PM2.5達紫爆指標等級,因此探討PM2.5在氣管內的行為便是當今重要的議題之一。至於此方面研究,大致分為實驗操作、數值模擬、和理論分析。本文將使用數值模擬的方式,以商用軟體ANSYS FLUENT計算氣相空氣與固相粒子之三維不可壓縮暫態流。首先利用繪圖軟體CATIA建立健康及氣喘患者呼吸道模型,接著匯入ANSYS Meshing來產生網格。最後將網格導入FLUENT後,並利用正弦波模擬休息、輕微活動和適度運動吸氣時雷諾數(ReD)與時間的關係以計算流場。在入口處放入固態粒子,以使用者自訂函數(User Define Function,簡稱UDF)初始化固態粒子之初始條件後,求解雙向耦合之兩相暫態流,經計算結果發現:(1)在健康分歧管中,顆粒總質量沉積率極低;(2)在氣喘分歧管中,迪恩渦流及皺摺處二次流動將影響顆粒於管壁之沉積;(3)顆粒較大,則總沉積分率較高;(4)在相同條件下,三級氣喘管道的沉積質量皆大於二級氣喘管道。本文除了探討不同氣管模型和吸氣型態下粒子之沉積分率,亦對於沉積位置及分布的可視化著墨,以提供PM2.5健康風險評估或相關之研究資料。
Hazardous purple warning of PM2.5 often heard in Taiwan in the recent years. The gas velocity field and deposition fraction (DF) of the PM2.5 particles in the trachea and generations 10-11 and 10-12 of Weibel’s lung model are investigated. By using the ANSYS commercial code, comprehensive three-dimensional numerical model was introduced to study the gas-solid two-way flow behaviors in normal and asthmatic airways. The transient gas phase was modeled with laminar incompressible flow and the particle phase was treated by discrete phase model (DPM). In this work, the air flow rate of trachea is considered to be three activity levels, i.e., resting, light activity, moderate exercise, and the flow structure and PM2.5 particles deposition pattern for normal and asthmatic airway bifurcation are compared and discussed. The numerical results reveal that Dean effect is the important reason which causes particles deposition.
【1】 C.A. Pope, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston, Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution, The Journal of the American Medical Association, 287, 1132-1141 (2002).
【2】 C.A. Pope, M. Ezzati, D.W. Dockery, Fine-Particulate Air Pollutionand Life Expectancy in the United States, The new England Journal of Medicine, 360, 376-386 (2009).
【3】 S. Feng, D. Gao, F. Liao, F. Zhou, X. Wang, The health effects of ambient PM2.5 and potential mechanisms, Ecotoxicology and Environmental Safety, 128, 67-74 (2016).
【4】 J.J. Schauer, M.P. Fraser, G.R. Cass, B.R.T. Simoneit., Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode., Environmental Science & Technology, 36, 3806-3814 (2002).
【5】 C.H. Lin, Y.L Wu, C.H Lai, J.G. Watson, J.C. Chow, Air quality measurements from the southern particulate matter supersite in Taiwan, Aerosol and Air Quality Research, 8, 233-264 (2008).
【6】 H.H. Tsai, C.S. Yuan, C.H. Hung, C. Lin, Physicochemical properties of PM2.5 and PM2.5–10 at inland and offshore sites over southeastern coastal region of Taiwan strait, Aerosol and Air Quality Research, 11, 664-678 (2011).
【7】 T.L. Katzman, A.P. Rutter, J.J. Schauer, G.C. Lough, C.J. Kolb, S.V. Klooster, PM2.5 and PM10–2.5 compositions during wintertime episodes of elevated PM concentrations across the midwestern USA, Aerosol and Air Quality Research, 10, 140-153 (2010).
【8】 Y.M. Kuo, H.F. Hung, T.T. Yang, Chemical compositions of PM2.5 in residential homes of southern Taiwan, Aerosol and Air Quality Research, 7, 403-416 (2007).
【9】 J. Kannosto, A. Virtanen, M. Lemmetty, J.M. Makela, J. Keskinen, H. Junninen, T. Hussein, P. Aalto, M. Kulmala, Mode resolved density of atmospheric aerosol particles, Atmospheric Chemistry and Physics, 8, 5327-5337 (2008).
【10】 A. Khlystov, C. Stanier, S.N. Pandis, An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol , Aerosol Science and Technology , 38, 229-238 (2004).
【11】 Z. Liu, B. Hu, D. Ji, Y. Wang, M. Wang, Y. Wang, Diurnal and seasonal variation of the PM2.5 apparent particle density in Beijing, China, Atmospheric Environment, 120, 328-338 (2015).
【12】 L. Morawska, G. Johnson, Z.D. Ristovski, V. Agranovski, Relation between particle mass and number for submicrometer airborne particles, Atmospheric Environment, 33, 1983-1990 (1999).
【13】 I.K. Lin, Study on particle PM2.5/PM10/PM25 mass concentration and size distribution in metropolis of Taiwan, National Yang-Ming University Institute of Public Health Master Thesis, (1997).
【14】 L.T. Choi, J.Y. Tu, H.F. Li, F. Thien, Flow and particle deposition patterns in a realistic human double bifurcation airway model, Inhalation Toxicology, 19, 117-131 (2007).
【15】 K. Horsfield, G. Dart, D.E. Olson, G.F. Filley, G. Cumming, Models of the human bronchial tree, Journal of Applied Physiology, 31, 207-217 (1971).
【16】 S.S. Khalafvand, M.S. Saidi, Eulerian modeling of particle deposition in a respiratory cycle using Horsfield and Weibel models for whole lung and the five lobes, Proceedings of the 12th Asian Congress of Fluid Mechanics, Daejeon, Korea, 18-21 (2008).
【17】 E.R Weibel, Morphometry of the Human Lung, Academic Press, New York, 1963.
【18】 L. Zhang, B. Asgharian, S. Anjilvel, Inertial deposition of particles in the human upper airway bifurcations, Aerosol Science and Technology, 26, 97-110 (1997).
【19】 C.S. Kim, A.J. Iglesias, Deposition of inhaled particles in bifurcating airway models: I. Inspiratory deposition, Journal of Aerosol Medicine, 2, 1-14 (1989).
【20】 D. Fontana, M. Vanni, G. Baldi, Fluid dynamics modeling of particulate deposition in the lungs, The International journal of Artificial Organs, 28, 667-677 (2005).
【21】 M.C. Piglione, D. Fontana, M. Vanni, Simulation of particle deposition in human central airways, European Journal of Mechanics B/Fluids, 31, 91-101 (2012).
【22】 Fenn, Wallance, H. Rahn, Handbook of Physiology: Section 3: Respiration, American Physiological Society: Washington, D.C, (1965).
【23】 Z. Zhang, C. Kleinstreuer, C.S. Kim, Gas-solid two-phase flow in a triple bifurcation lung airway model, International Journal of Multiphase Flow, 28, 1021-1046 (2002).
【24】 Z. Zhang, C. Kleinstreuer, Effect of Particle Inlet Distributions on Deposition in a Triple Bifurcation Lung Airway Model, 14, 13-29 (2001).
【25】 K. Nazridoust, B. Asgharian, Unsteady-state airflow and particle deposition in a three-generation human lung Geometry, Inhalation Toxicology, 20, 595-610 (2008).
【26】 K. Donaldson ,W. MacNee, V. Stone, Particulate matter, ultrafine particles, Encyclopedia of Respiratory Medicine, 104-110 (2006).
【27】 X. Chen, W. Zhone, B. Jin, Simulation on movement and deposition of inhalable contaminant particles in lower respiratory tract, Journal of Southeast University (Natural Science Edition), 41, 393-399 (2011).
【28】 X. Chen, W. Zhong, B. Sun, B. Jin, X. Zhou, Study on gas/solid flow in an obstructed pulmonary airway with transient flow based on CFD–DPM approach, Powder Technology, 217, 252-260 (2012).
【29】 J. Vempilly, B. Abejie, V. Diep, M. Gushiken, M. Rawat, T.R. Tyner, The synergetic effect of ambient PM2.5 exposure and rhinovirus infection in airway dysfunction in asthma: A pilot observational study from the central valley of california, Experimental Lung Research, 39, 434-440 (2013).
【30】 J. McCreanor, P. Cullinan, M.J. Nieuwenhuijsen, J. Stewart-Evans, E. Malliarou, L. Jarup, R. Harrington, M. Svartengren, I.K. Han, P. Ohman-Strickland, K.F. Chung, J. Zhang, Respiratory effects of exposure to diesel traffic in persons with asthma, The New England Journal of Medicine, 357, 2348-2358 (2007).
【31】 R.K. Lambert, S.L. Codd, M.R. Alley, R.J. Pack, Physical determinants of bronchial mucosal folding, Journal of Applied Physiology, 77, 1206-1216 (1994).
【32】 B.R. Wiggs, C.A. Hrousis, J.M. Drazen, R.D. Kamm, On the mechanism of mucosal folding in normal and asthmatic airways, Journal of Applied Physiology, 83, 1814-1821 (1997).
【33】 C.A. Hrousis, B.J.R. Wiggs, J.M. Drazen, D.M. Parks, R.D. Kamm, Mucosal folding in biologic vessels, Journal of Biomechanical Engineering, 124, 334-341 (2002).
【34】 G.M. Donovan, M.H. Tawhai, A simplified model of airway narrowing due to bronchial mucosal folding, Respiratory Physiology & Neurobiology, 171, 144-150 (2010).
【35】 J.W.D. Backer, W.G. Vos, A. Devolder, S.L. Verhulst, P. Germonpré, F.L. Wuyts, P.M. Parizel, W.D. Backer, Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation, Journal of Biomechanics, 41, 106-113 (2008).
【36】 S. Zoltán, H. Alpar, B. Imre, H. Werner, B. Klara, S. Marius, Evaluation of inhaled drug deposition during an asthma attack using a stochastic lung model, Acta Medica Transilvanica, 2, 238-240 (2013).
【37】 H. Zhang, G. Papadakis, Computational analysis of flow structure and particle deposition in a single asthmatic human airway bifurcation, Journal of Biomechanics, 43, 2453-2459 (2010).
【38】 M. Ebina, H. Yaegashi, R. Chiba, T. Takahashi, M. Motomiya, M. Tanemura, Hyperreactive site in the airway tree of asthmatic patients revealed by thickening of bronchial muscles, American Review of Respiratory Disease, 141, 1327-1332 (1990).
【39】 “Ansys Fluent User’s Guide”, Ver. 16.0, ANSYS Inc, (2011).
【40】 “CATIA Documentation”, DASSOUALT SYSTEM, (2002).
【41】 J.P.V. Doormaal, G.D. Raithby, Enhancements of the SIMPLE Methods for Predicting Incompressible Fluid Flows, Numerical Heat Transfer, 7, 147-163 (1984).
【42】 F.J. Kelecy, Coupling Momentum and Continuity Increases CFD Robustness, ANSYS Advantage, 2, 49-51 (2008).
【43】 袁竹林、朱立平、耿凡、彭正標,氣固兩相流動與數值模擬,東南大學出版社,南京,ISBN 978-7-5641-4098-4,2013年.
【44】 S.A. Morsi, A.J. Alexander, An investigation of particle trajectories in two-phase flow systems, Journal of Fluid Mechanics, 55, 193-208 (1972).
【45】 B.R. Wiggs, R. Moreno, J.C. Hogg, C. Hilliam, P.D. Paré., A model of the mechanics of airway narrowing, Journal of Applied Physiology, 69, 849-860 (1990).
【46】 施佳伶,氣喘患者呼吸道內氣體-固體兩相暫態流之數值研究,國立成功大學航太所碩士論文,2015年.
【47】 湛含輝、成浩、劉建文、湛雪輝,二次流原理,中南大學出版社,長沙市,ISBN 7 - 81105 - 261 - X/G•093,2006年.
【48】 C.C. Daigle, D.C. Chalupa, F.R. Gibb, P.E. Morrow, G. Oberdörster, M.J. Utell, M.W. Frampton, Ultrafine Particle Deposition in Humans During Rest and Exercise, Inhalation Toxicology, 15, 539-552 (2003).
【49】 W.R. Dean, Note on the motion of fluid in a curved pipe, Philosophical Magazine, 4, 208-223 (1927).
【50】 S. Kim, S.J. Lee, Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry, Experiments in Fluids, 46, 255-264 (2009).
【51】 Z. Zhang, C. Kleinstreuer, C.S. Kim, Flow Structure and Particle Transport in a Triple Bifurcation Airway Model, American Society of Mechanical Engineers, 123, 320-330 (2001).
【52】 F.Y. Leong, K.A. Smith, C.H. Wang, Secondary flow behavior in a double bifurcation, Physics of Fluids, 21, 043601 (2009).
【53】 J. Huang, L. Zhang, Numerical simulation of micro-particle deposition in a realistic human upper respiratory tract model during transient breathing cycle, Particuology, 9, 424-431 (2011).
【54】 D.C. Chalupa, P.E. Morrow, G. Oberdörster, M.J. Utell, M.W. Frampton, Ultrafine Particle Deposition in Subjects with Asthma, Environmental Health Perspectives, 112, 879-882 (2004).
【55】 Z. Duan, F.Y. Du, Y.D. Yuan, Y.P. Zhang, H.S Yang, W.S. Pan, Effects of PM2.5 exposure on Klebsiella pneumoniae clearance in the lungs of rats, Chinese Journal of Tuberculosis and Respiratory Disease, 36, 836-840 (2013).