| 研究生: |
羅慶祺 Lo, Ching-Chi |
|---|---|
| 論文名稱: |
渦輪編碼系統之通道估測與符號偵測結合技術 Joint Channel Estimation and Symbol Detection Based on Iterative Processes for Turbo Coded System |
| 指導教授: |
蘇賜麟
Su, Szu-Lin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 通道預測 、引導符號插入的調變系統 、最小平方適合 、最大事後機率偵測 、疊代程序 、差分調變 、多符號差分圓半徑解碼 、渦輪碼 、偵測與解碼的疊代 |
| 外文關鍵詞: | Channel estimation, PSAM (Pilot Symbol Assisted Modulation), Least squared fitting, MAP detection, iterative processing, differential modulation, MSDSD, Turbo codes, Iterative detection and decoding |
| 相關次數: | 點閱:215 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,討論兩種系統。一個是引導符號插入的調變系統,而另一個是差分相位調變系統。在引導符號插入的調變系統,提出一個結合通到預測與渦輪編碼的演算法,所提出的通道預測方法是基於最小平方適合理論。此方法和線性信最佳的最小平均平方差錯誤的通道預測相比,它並不需要考慮衰減速率或雜訊變異的通道參數。
對渦輪編碼差分相位調變系統在有相關性的平坦衰減通道,兩種架構在本篇論文被提出,一個是近似最佳的軟輸入軟輸出順向逆向最大事後機率偵測,另一個是次佳的順向逆向多符號差分圓半徑解碼。一個串接疊代軟輸入軟輸出順向逆向最大事後機率偵測與軟輸入軟輸出解碼器被提出來在不降低性能下來降低計算複雜度。模擬結果顯示順向逆向最大事後機率偵測和事後機率解調器、軟輸入軟輸出最大事後機率偵測、軟輸入軟輸出多符號差分圓半徑解碼比起來,在較低的複雜度下可以提供相同或更好的位元錯誤率。雖然複雜度要比疊代濾波器多差分偵測架構來的高,但可以提供較好的位元錯誤率
輸入軟輸出多符號差分圓半徑解碼在複雜度隨偵測長度成平方下,可以提供次佳的性能。爲了進一步減少複雜度,用於差分相位調變編碼系統的順向逆向多符號差分圓半徑解碼被提出,主要的想法是將偵測的區間分成兩個次區間,這兩個次區間分別執行順向逆向的程序。模擬結果顯示順向逆向多符號差分圓半徑解碼和軟輸入軟輸出多符號差分圓半徑解碼比起來,有幾乎相同的性能和較低的複雜度。
In this thesis, two systems are discussed. One is pilot symbol assisted modulation (PSAM) system, and the other is differential modulation system. For PSAM system, the algorithm of iterative channel estimation and turbo decoding is proposed. The proposed channel estimation is based on least squared fitting (LSF) theorem. Compared with the linear optimum MMSE (minimum mean square error) channel estimation, it doesn’t require any channel characteristic like as fading rate or noise variance.
For turbo-coded differential phase shift keying (DPSK) systems under correlated flat fading channels, two schemes are proposed. One is the near optimal schme, soft-input soft-output (SISO) forward/backward maximum a posteriori (FB-MAP), and the other is the suboptimal scheme, Forward/Backward multiple-symbol differential sphere decoder (FB-MSDSD). A serial iterative structure of SISO FB-MAP detection and SISO turbo decoder is proposed to reduce the computational complexity of MAP detection without performance degradation. The simulation results show that the FB-MAP detection scheme offers the same or better bit error rate (BER) performance with lower computational complexity when compared with a posteriori probability (APP) demodulator, SISO MAP detection and SISO MSDSD scheme. And, though the computational complexity is higher than iterative filtered multiple differential detection (IF-MDD) schemes, the proposed detection scheme can have better BER performance.
The SISO MSDSD can offer suboptimal performance and its complexity is quadratic with detection length. To further reduce the complexity, the FB-MSDSD scheme for coded DPSK systems is proposed. The key idea is that the detection interval is split into two subintervals which are processed in the forward and backward directions respectively. Simulation results show that the proposed scheme has almost the same performance and lower complexity when compared with the SISO-MSDSD scheme with the same detection length.
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes,” in Proceedings of ICC'93, Geneve, Switzerland, May 1993, pp. 1064-1070.
[2] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 909–926, May 1998.
[3] M. J. Gertsman and J. H. Lodge, “Symbol-by-symbol MAP demodulation of CPM and PSK signals on Rayleigh flat-fading channels,” IEEE Trans. Commun., vol. 45, pp. 788–799, July 1997.
[4] Q. Li, C. N. Georghiades and X. Wang, “An Iterative Receiver for Turbo-Coded Pilot-Assisted Modulation in Fading Channels”, IEEE Communications Letters, vol. 5, no. 4, pp. 145-147, April 2001
[5] C. Komninakis and R. D. Wesel, “Joint Iterative Channel Estimation and Decoding in Flat Correlated Rayleigh Fading”, IEEE Journal on Selected Areas in Communications, special l issue: The Turbo Principle - From Theory to practice, vol. 19, no. 9, September 2001, p. 1706-1717.
[6] M. C. Valenti, and B. D. Woerner, “Iterative Channel Estimation and Decoding of Pilot Symbol Assisted Turbo Codes Over Flat-Fading Channels”, IEEE J. Select. Areas Commun., vol. 19, no. 9, pp.1697-1705 Sept. 2001
[7] H. J. Su and E. Geraniotis, “Low-Complexity Joint Channel Estimation and Decoding for Pilot Symbol-Assisted Modulation and Multiple Differential Detection Systems with Correlated Rayleigh Fading,” IEEE Trans. Commun., vol. 50, no. 2, pp.249-261 Feb. 2002
[8] P. Hoeher and J. Lodge, “Turbo DPSK: Iterative Differential PSK Demodulation and Channel Decoding, ” IEEE Trans. Commun., vol. 47, no. 6, pp.837-843, June 1999.
[9] A. A. Hansson and T. M. Aulin, “Iterative Diversity Detection for Correlated Continuous-Time Rayleigh Fading Channels, ” IEEE Trans. Commun., vol. 51, no. 2, Feb 2003.
[10] H. J. Su and E. Geraniotis, “Low-Complexity Joint Channel Estimation and Decoding for Pilot Symbol-Assisted Modulation and Multiple Differential Detection Systems with Correlated Rayleigh Fading, ”IEEE Trans. Commun., vol. 50, no. 2, pp.249-261 Feb. 2002.
[11] Ching-Chi Lo and Szu-Lin Su, “Iterative SISO MAP Detection and SISO Turbo Decoder for Differential Modulation Systems”, IEEE ICCS 2006, Singapore, October 2006.
[12] V. Pauli, L. Lampe, and R. Schober, “Turbo DPSK Using Soft Multiple-Symbol Differential Sphere Decoding”, IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1385-1398, April 2006.
[13] W. C. Jakes, Microwave Mobile Communications., New York: Wiley, 1974.
[14] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-input Soft-output Modules for the Construction and Distributed Iterative Decoding of Code Networks, ”Eur. Trans. Telecommun., vol. 9, no. 2, pp. 155-172, Mar. 1998.
[15] J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of Binary Block and Convolutional Codes”, IEEE Trans. Information Theory, vol. 42, no. 2, pp.429-445, March 1996
[16] 3rd Generation Partnership Project (3GPP)
[17] J. K. Cavers, “An Analysis of Pilot Symbol Assisted Modulation for Rayleigh Fading Channels”, IEEE Trans. Vehicular Technology, vol. 40, No. 4, pp.686-693, November 1991
[18] Steven J. Leon, Linear Algebra with Applications, 4thEd Prentice Hall International 1995
[19] C. Xu and X. Yu, “A Novel Channel Estimation Scheme with Least Square Fitting,” Vehicular Technology Conference, VTC Spring 2002 .IEEE 55th , vol. 2 , 6-9 pp.723 - 725 vol.2 ,May 2002
[20] Simon Haykin, Adaptive Filter Theory, 2nd Ed N. J. Prentice Hall International 1991
[21]M. Jordan and R. Nichols “The Effects of Channel Characteristics on Turbo Code Performance,” in Proc. aMilcom’96, McLean, VA, Oct. 1996, pp. 173-178
[22] T. A. Summers and S. G. Wilson, “SNR Mismatch and Online Estimation in Turbo Decoding,” IEEE Trans. Commun., vol. 46, pp.421-423, Apr. 1998
[23] M. C. Valenti and B. D. Woerner, “Performance of Turbo Codes in Interleaved Flat Fading Channels with Estimated Channel State Information,” in Proc. VTC’98, Ottawa, Canada, pp. 66-70 May 1998
[24] M. Peleg and S. Shamai (Shitz), “Iterative decoding of coded and interleaved noncoherent multiple symbol detected DPSK,” Electron. Lett., vol. 33, no. 12, pp. 1018–1020, Jun. 1997.
[25] I. D. Marsland and P. T. Mathiopoulos, “On the performance of iterative noncoherent detection of coded M-PSK signals,” IEEE Trans. Commun., vol. 48, no. 4, pp. 588–596, Apr. 2000.
[26] M. Peleg, S. Shamai (Shitz), and S. Galán, “Iterative decoding for coded noncoherent MPSK communications over phase-noisy AWGN channel,” in Proc. IEE—Commun., vol. 147, pp. 87–95, Apr. 2000.
[27] D. Divsalar and M. K. Simon, “Multiple Symbol Differential Detection of MPSK,” IEEE Trans. Commun., vol. 38, no. 3, pp. 300–308, Mar. 1990.
[28] D. Makrakis, P. T. Mathiopoulos, and D. P. Bouras, “Optimal Decoding of Coded PSK and QAM Signals in Correlated Fast Fading Channels and AWGN: A Combined Envelope, Multiple Differential and Coherent Detection Approach, ”IEEE Trans. Commun., vol. 42, no. 1, pp. 63-75, Jan. 1994.
[29] L. H.-J. Lampe and R. Schober, “Iterative Decision-Feedback Differential Demodulation of Bit-Interleaved Coded MDPSK for Flat Rayleigh Fading Channels,” IEEE Trans. Commun., vol. 49, no. 7, pp. 1176–1184, July 2001.
[30] L. Lampe and R. Schober, “Improvement and Analysis of Iterative Decision-Feedback Differential Demodulation,” IEEE Trans. Commun., vol. 53, no. 8, pp. 1263 – 1268, Aug. 2005.
[31] R. Schober, W. H. Gerstacker, and J. B. Huber, “Decision-Feedback Differential Detection of MDPSK for Flat Rayleigh Fading Channels,” IEEE Trans. Commun., vol. 47, no. 7, pp. 1025-1035, JULY 1999.
[32] R. Raheli, A. Polydoros, and C.-K. Tzou, “Per-survivor processing: A general approach to MLSE in uncertain environments,” IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 354-364,Feb./Mar./Apr. 1995.
[33] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,” IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201–2214, Aug. 2002.
[34] L. Lampe, R. Schober, V. Pauli, and C. Windpassinger, “Multiple-Symbol Differential Sphere Decoding, ”IEEE Trans. Commun., vol. 53, no. 12, pp. 1981-1985, Dec. 2005.
[35] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284–287, Mar. 1974.
校內:立即公開