| 研究生: |
楊承翰 Yang, Chen-Han |
|---|---|
| 論文名稱: |
結合開放街圖(OSM)與夜間燈光影像於高解析度人口密度估計 High-Resolution Population Density Estimation from Integration of Nighttime Light images and OpenStreetMap(OSM) |
| 指導教授: |
朱宏杰
Chu, Hone-Jay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 夜間燈光數據 、OSM開放街圖 、人口密度 、迴歸模型 |
| 外文關鍵詞: | night-time light, OSM, population density, regression model |
| 相關次數: | 點閱:130 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
城市化與人類社會發展息息相關。如何根據遙感數據探索城市化議題是相關重要的。夜間燈光影像為城市化和社會經濟變量的研究提供了一個新的領域,這與傳統衛星遙感有很大的不同。美國國家海洋暨大氣總署的國家氣象衛星計劃/操作線掃描系統(DMSP/OLS)提供夜間燈光數據。許多研究利用DMSP/OLS傳感器監測近紅外光輻射(NIR),並量化人類活動與社會經濟變量和夜間亮度之間的關係。因此,本研究的宗旨在產製高解析度人口密度圖以了解人口連續性的分佈趨勢。對於夜間燈光影像,由於大氣條件的逐年變化和傳感器的周期性變化,不同年份獲得的夜間光照數據無法直接比較,因此,本研究使用多時期夜間燈光找出彼此的偽不辨特徵(PIFs),並依相對輻射校準參數校正影像使DN值更加穩定。在本研究中,考慮與人口密度相關的三個因素,如:夜間燈光、開放街圖(OSM)的道路密度和興趣點密度,此三個因素在迴歸模型裡設置為自變數,而依變數為實際人口密度,迴歸模型採用傳統的全域型迴歸(OLS),探討全域式自變數與人口之間的關係,局部型迴歸使用地理加權迴歸(GWR),該模型確定每個城市人口密度與自變數的空間變化關係,然而,該模型是一種局部迴歸方法,容易由變數之間的負相關得到無意義的負人口密度,因此,本文提出了一種利用調整最佳帶寬與非負最小二乘的約束條件改良GWR模型,並定義為非負地理加權迴歸(NGWR),該模型是探索人口密度分佈的有效方法,利用該方法可以解決人口密度負值和優化變數之間的擬合情況。與OLS和GWR相比,NGWR提供最佳的預測人口密度的方法,此外,本研究也考慮到時間變化的關係,考慮時間維度而建立非負時空地理加權迴歸(NGTWR),由2004~2013年的資料為基準,在此模型確立彼此之間的關係,進而獲得迴歸參數,確定好不同模型的迴歸參數後,藉由空間內插依已知迴歸參數估計未知迴歸參數,再使用網格運算的方式獲取人口密度圖。
本研究對不同的人口密度圖做精度驗證,不考慮時間因素下,最佳人口密度估計模型為NGWR,其樣點交叉驗證結果為相對誤差率17.95%,而NGTWR可降至7.87%,此外,校正後的夜間燈光影像可改善人口密度估計精度,其區域驗證下結果為均方根誤差230降至223,而多變數人口密度估計的誤差比單一變數低,其均方根誤差由230降至221,另一方面,本研究結合OSM水體、森林資料調整人口密度分佈,也針對都市化的議題,進行小區域的人口密度估計,研究區域選取北京市,此地方人口密度估計採用最新夜間燈光影像VIIRS/DNB數據,具有更高空間解析度以及更細部的空間分佈特徵,北京市所估計的人口密度圖為本研究對人口估計方面的延伸,此外,本文從不同研究所產製的人口密度圖進行比較,進而得知可改善的空間以及不同演算法在人口密度估計上的優勢。
Nighttime light imagery offers a unique perspective that greatly differs from that of conventional satellite remote sensing in studying urbanization and socio-economic variables. The National Oceanic and Atmospheric Administration provides night light data, including DMSP/OLS and VIIRS/DNB nighttime light images. However, given the periodic changes in satellite sensors and the yearly variations in atmospheric conditions, the nighttime light data obtained across different years cannot be directly compared. Therefore, the application of multi-temporal nighttime light calibration is proposed to enhance the stability of these images. This study extracts three factors related to population density, namely, nighttime light, road density, and POI density, from OpenStreetMap (OSM) and imports these factors into a regression model. After obtaining the coefficient of this model, population density maps of China and Beijing were generated and adjusted based on the water body and forest land distribution data from OSM. Result shows that the proposed model is more accurate than the existing models as reflected in its RMSE and MRE indexes. Therefore, the regional population of China can be reliably and effectively estimated based on OSM features and nighttime light images.
Bao, N., Lechner, A.M., Fletcher, A., Mellor, A., Mulligan, D., Bai, Z., (2012). “Comparison of relative radiometric normalization methods using pseudo-invariant features for change detection studies in rural and urban landscapes”, Journal of Applied Remote Sensing, vol. 6(1): 063578.
Baugh, K.E., Elvidge, C.D., Tilottama, G., Ziskin, D., (2010), “Development of a 2009 stable lights product using DMSP-OLS data”, Proceedings of the Asia Pacific Advanced Network, vol. 30, pp.114~130.
Chu, H.C., Yang, C.H., Chou, C.C., (2019). “Adaptive Non-Negative Geographically Weighted Regression for Population Density Estimation Based on Nighttime Light”, International Journal of Geo-information, vol. 8(1):26
Chu, H.C., Kong, S.J., Chang, C.H., (2018). “Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression”, International Journal of Applied Earth Observation and Geoinformation, vol. 65, pp.1~11
Fotheringham, A., Brunsdon, C., Charlton, M., (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, America: John Wiley & Sons.
Fu, D., Xia, X., Duan, M., Zhang, X., Li, X., Wang, J., Liu, J., (2018). “Mapping nighttime PM2.5 from VIIRS DNB using mixed-effect model”, Atmospheric Environment, vol. 178, pp.214~222.
Han, S.R., Wei, S., Zhou, W., Zhamg, M. J., Tao, T.T., Qiu, L., Liu, M.S., Xu, C., (2017). “Quantifying the spatial pattern of urban thermal fields based on point of interest data and Landsat images”, Acta Ecologica Sinica, vol.
37(16): 5305-5312.
Huang, B., Wu, B., Barry, M., (2010). “Geographically and temporally weighted regression for modeling Spatio-temporal variation in house prices”, International Journal of Geo-information Science, vol. 24(3), pp. 383~401.
Huang, Y., Zhao, C., Song, X., Chen, J., Li, Z., (2018). “A semi-parametric geographically weighted(S-GWR) approach for modeling the spatial distribution of population”, Ecological Indicators, vol. 85, pp. 1022~1029.
Ji, G., Tian, L., Zhao, J., Yue, Y., Wang, Z., (2019). “Detecting spatiotemporal dynamics of PM2.5 emission data in China using DMSP-OLS nighttime stable light data”, Journal of Cleaner Production, vol.209, pp.363~370.
Jeswani, R., (2017). Evaluation of the consistency of DMSP-OLS and SNPP-VIIRS Night-time Light Datasets, Indian Space Research Organisation, Indian institute of remote sensing.
Jasinski, T., (2019). “Modeling electricity consumption using nighttime light images and artificial neural networks”, Energy, vol. 179, pp.831~842.
Kumar, P., Sajjad, H., Joshi, P.K., (2019). “Modeling the luminous intensity of Beijing China using DMSP-OLS night-time lights series data for estimating population density”, Physics and Chemistry of the Earth, Parts A/B/C, vol. 109, pp.31~39.
Krikigianni, E., Tsiakos, C., Chalkias., (2019). “Estimating the relationship between touristic activities and night light emissions”, European Journal of Remote Sensing, vol. 52, pp.233~246.
Kunze, C., Hecht, R., (2015). “Semantic enrichment of building data with volunteered geographic information to improve mapping of dwelling units and population”, Computes, Environment and Urban Systems, vol. 53,
pp. 4~18.
Liu, Z., He, C., Zhang, Q., Huang, Q., Yang, Y., (2012). “Extracting the Dynamics of Urban Expansion in China Using DMSP/OLS Nighttime Light Data from 1992 to 2008”, Landscape and Urban Planning, vol. 106(1), pp.62~72
Li, K., Chen, Y., Li, Y., (2018). “The Random Forest-Based Method of Fine-Resolution Population Spatialization by Using the International Space Station Nighttime Photography and Social Sensing Data”, Remote sensing, MDPI, Open Access Journal, vol. 10(10):1650
Li, L., Yu, T., Zhao, L., Zhan, Y., Zheng, F., Zhang, Y., Mumtaz, F., Wang, C., (2019). “Characteristics and trend analysis of the relationship between land surface temperature and nighttime light intensity levels over China”, Infrared Physics&Technology, vol. 97, pp.381~390.
Mills, S., S. Weiss, and C. Liang., (2013). “VIIRS Day/Night Band (DNB) Stray Light Characterization and Correction”, Proceedings SPIE 8866, Earth Observing Systems XVIII, 88661P.
National Bureau of Statistics of China, (2004-2013). China statistical Yearbook for Regional Economy, China: China Statistical Press
Qizhi, M., Ying, L., Kang, W., (2016). “Spatio-Temporal Changes of Population Density and Urbanization Pattern in China(2000-2010)”, China City Planning Review, vol. 25, No.4.
Rizqihandari, N., Indratmoko, S., (2016). “Using OpenStreetMap Data for Population Distribution Model”, International Conference on Geography and Education, November, pp.79~86.
Rosina, K., Hurbanek, P., Cebecauer, M., (2017). “Using OpenStreetMap to improve population grids in Europe”, Cartography and Geographic
Information Science, vol. 44, pp.139~151.
Tan, M., Li, X., Li, S., Xin, L., Wang, X., Li, Q., Li W., (2018). “Modeling population density based on nighttime light images and land use data in China”, Applied Geography, vol. 90, pp.239~247.
Wei, Y., Liu, H., Song, W., Yu, B., Xiu, C., (2014). “Normalization of time series DMSP-OLS nighttime light images for urban growth analysis with Pseudo Invariant Features”, Landscape and Urban Planning, vol. 128, pp.1~13.
Wang, W., Cheng, H., Zhang, Li., (2012). “Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China”, Advances in Space Research, vol. 49, pp.1253~1264.
Wang, L., Wang, S., Zhou, Y., Liu, W., Hou, Y., Zhu, J, Wang, F., (2018). “Mapping population density in China between 1990 and 2010 using remote sensing”, Remote Sensing of Environment, vol.210, pp.269~291.
Xiao, H., Ma, Z., Mi, Z., Kelsey, J., Zheng, J., Yin, W., (2018). “Spatio-temporal simulation of energy consumption in China’s provinces based on satellite night-time light data”, Applied Energy, vol. 231, pp. 1070~1078.
Zou, J., Yanhua, Chen, Y., Tian, J., Wang, T., (2014). Construction of the Calibration Model for DMSP/OLS Nighttime Light Images Based on ArcGIS, University of Wuhan, Geodesy and Geomatics.
Zheng, Q., Weng, Q., Wang, K., (2019). “Developing a new cross-sensory calibration model for DMSP-OLS and Suomi-NPP VIIRS night-light imageries”, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 153, pp.36~47.
Zhang, Y., Li, X., Wang, A., Bao, T., Tian, S., (2015). “Density and diversity of OpenStreetMap road networks in China”, Journal of Urban
Management, vol. 4(2), pp.135~146.
Zhao, G., Zheng, X., Yuan, Z., Zhang, L., (2017). “Spatial and Temporal Characteristics of Road Networks and Urban Expansion”, Land, MDPI, Open Access Journal, vol. 6(2), pp.1~19.