| 研究生: |
許恩瑋 Hsu, En-Wei |
|---|---|
| 論文名稱: |
針對無線車用行動通訊網路上一個基於行車路線的路由協定之研究 A Track-based Routing Protocol in Wireless Vehicular Ad Hoc Networks |
| 指導教授: |
蘇銓清
Sue, Chuan-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 車輛與道路基礎設施通訊 、車用行動通訊網路 、基於行車路線的路由 、單向路由 、車輛與車輛通訊 |
| 外文關鍵詞: | Track-based Routing, IVC, RVC, VANET, Unicast routing |
| 相關次數: | 點閱:134 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在無線車用行動通訊網路上實現網路通訊的想法已經慢慢地吸引各國所有主要自動汽車製造公司的注意。由於車輛高移動速度以及通訊連結時常斷裂的特性,建立一條介於來源節點與目標節點之間不易快速斷裂且可以維持傳輸時間大的路徑變得相當的具有挑戰。
目前大部分針對無線車用行動通訊網路上的路由協定,其部分只利用車輛目前的地理位置以及行進速度與方向預估未來車輛的地理位置以選擇傳輸路徑。但是這些方法都未考慮駕駛者實際之駕駛行為以及車輛在道路上的行進路線,利用上述方式所估計出車輛未來的地理位置有可能會偏離真實之行進路線,並且所選擇的傳輸路徑亦有可能因為車輛在行進路線上遇到過多的十字路口使得車輛轉彎機率增大而造成路徑的斷裂。
所以在這一篇論文中,我們提出一個考慮真實駕駛者行為以及車輛行進路線之路由協定,此路由協定名稱為Track-based RoutIng Protocol,其簡稱為TRIP。
TRIP藉由車輛的移動資訊(車輛的地理位置、行進方向、行進速度)與道路資訊(道路長度,距離十字路口距離,十字路口之間的距離…等等),算出車輛可能的行車路線,並且利用這段行車路線來估計這段連結在這行進路線上的有效傳輸程度。除此之外我們還利用車輛未來行進路線的可預測性,來預測路徑上可用的替代連結,以減少因為路徑斷裂所要維護路徑的額外花費。因此TRIP將可以建立一條不易快速產生斷裂之傳輸路徑,並且此路徑可以維持傳輸時間較久的傳輸路徑來增加資料封包的抵達率,以及減少因為路徑斷裂所可能造成的控制封包負載。
我們所提出之架構,是透過網路模擬器(NS-2)來進行模擬驗證。從模擬的結果顯示,我們的架構對於傳輸路徑的平均傳輸時間、平均重新尋找路徑的次數,控制封包的負載以及封包傳遞率上有較好的表現。
Internetworking over Wireless Vehicular Ad Hoc NETworks (VANETs) is getting increasing attention from all major car manufacturers. Because of high mobility and frequent link disconnection, it becomes quite challenging to establish a path which is not easy to break early and keeps transmission time long.
In current routing protocols for VANETs, almost of them choose the primary path based on the relations of future geographical position of vehicles that are calculated by the geographical position, speed and direction of vehicles at present. All of them do not take the actual driver’s behavior and the vehicles’ track on the roads into account, so the estimated future geographical position of vehicles may not still on the roads. And the possibility of primary path breakage is increased according to the vehicles that meet more intersections along their track.
In this thesis, we propose a routing protocol which takes account of the actual drivers’ behavior and the vehicles’ track, called Track-based RoutIng Protocol, TRIP. TRIP not only uses the vehicles’ movement information, but also the information of roads to consider the selection of primary path. TRIP calculates the vehicle’s possible track on the roads according to the vehicle’s movement information (including the position, moving direction, and speed of the vehicle) and roads’ information (including the length of the road, the distance between intersections…etc), and estimates the effectively transmission degree of the links based on the vehicle’s track. Besides, due to the predictability of the future vehicles’ track, TRIP proposes a mechanism of alternative path prediction in order to reduce the extra cost of route maintains. Therefore, TRIP can establish a path which is not easy to break early and keeps transmission time long to increase the packet delivery ratio and reduce the control message overhead caused by path breakages.
The performance of the scheme is evaluated through Network Simulator (NS2). Simulation result shows the benefits of the proposed routing scheme in terms of increasing path average transmission time, reducing the number of path rediscovery, reducing control message overhead and increasing packet delivery ratio.
[1]ASTM E2213-03, “Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems 5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications”, ASTM Int'l., July 2003.
[2]VII, http://www.its.dot.gov/vii/
[3]L. Andreone and C. Ricerche, “Activities and Applications of the vehicle to vehicle and vehicle to infrastructure communication to enhance road safety”, the 5th European Congress and Exhibition on ITS 2005, pp. 345-352, Hannover, Germany, June 2005.
[4]R. Kruger, H. Fuler, M. Torrent-Moreno, M. Transier, H. Hartenstein, and W. Effelsberg, “Statistical Analysis of the FleetNet Highway Movement Patterns”, Technical Report TR-2005-004, Department of Mathematics and Computer Science, University of Mannheim, July 2005.
[5]i2010, http://ec.europa.eu/information_society/eeurope/i2010/index_en.htm
[6]ERTICO, http://www.ertico.com/
[7]ITS Taiwan, http://www.its-taiwan.org.tw/its-taiwan-2.htm
[8]IETF, the Internet Engineering Task Force, http://www.ietf.org/home.html
[9]M. Bechler, L. Wolf, O. Storz, and W.J. Franz, “Efficient Discovery of Internet Gateways in Future Vehicular Communication Systems”, Proceedings of the 57th IEEE Semiannual Vehicular Technology Conference (VTC 2003), vol. 2, pp. 965-969, Jeju, South Korea, April 2003.
[10]M. Ghassemian, P. Hofmann, V. Friderikos, C. Prehofer and A.H. Aghvami, “An Optimised Gateway Selection Mechanism for Wireless Ad hoc Networks Connected to the Internet”, Proceedings of the 63rd IEEE Semiannual Vehicular Technology Conference (VTC 2006), pp. 782-787, Melbourne, Australia, May 2006.
[11]C. Shin, S. Kim and S. An, “Stable Gateway Selection Scheme based on MANET with Internet”, Proceedings of the 6th IEEE International Conference on Computer and Information Technology (CIT2006), pp. 80-85, Seoul, Korea, Sept 2006.
[12]M. Bechler and L. Wolf, “Mobility Management for Vehicular Ad Hoc Networks”, Proceedings of the 61st IEEE International Conference on Vehicular Technology (VTC 2005), vol. 4, pp. 2294-2298, Stockholm, Sweden, May 2005.
[13]M. Ghassemian, V. Friderikos and H. Aghvami, “Hybrid Handover in Multihop Radio Access Networks”, Proceedings of the 61st IEEE Semiannual Vehicular Technology Conference (VTC 2005), vol. 4, pp. 2207-2211, Stockholm, Sweden, June 2005.
[14]B. Petit, M. Ammar and R. Fujimoto, “Protocols for Roadside-to-Roadside Data Relaying over Vehicular Networks”, Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC2006), pp. 294-299, Las Vegas, Nevada USA, April 2006.
[15]T.D.C. Little and A. Agarwal, “An Information Propagation Scheme for VANETs”, Proceedings of the Intelligent Transportation Systems (ITS2005), pp. 155-160, Vienna, Austria, Sep. 2005.
[16]C.J. Merlin and W.B. Heinzelman, “A Study of Safety Applications in Vehicular Networks”, Proceedings of 2nd IEEE International Conference on Mobile Adhoc and Sensor Systems Conference (MASS 2005), pp. 1-8 Washington, DC, Nov. 2005.
[17]C. Lochert, M. Mauve, H. Fusler and H. Hartenstein, “Geographic Routing in City Scenarios”, Proceedings of ACM SIGMOBILE Mobile Computing and Communications Review, vol. 9, no. 1, pp. 69-72, January 2005.
[18]Q. Xu, T. Mak, J. Ko and R. Sengupta “Vehicle-to-Vehicle Safety Messaging in DSRC”, Proceedings of the 1st ACM international workshop on Vehicular ad hoc networks, pp. 19-28, Philadelphia, PA, USA, October 2004.
[19]S. Yousefi, M.S. Mousavi and M. Fathy, “Vehicular Ad Hoc Networks (VANETs): Challenges and Perspectives”, Proceedings of the 6th international conference on ITS Telecommunications (ITST2006), pp. 761-766, China, June 2006.
[20]T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR)”, RFC 3626, IETF Network Working Group, October 2003.
[21]C. Perkins, “Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers”, Proceedings of ACM SIGCOMM Conference on Communications Architectures, Protocols and Applications, pp. 234-244, London, UK, Aug. 1994.
[22]E. Perkings, E. M. Belding-Royer and S. R. Das, “Ad Hoc On-Demand Distance Vector (AODV) Routing”, IETF RFC, July 2003.
[23]D.B. Johnson, D. Maltz, and Y.-C. Hu, “The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks”, Internet Draft, draft-ietfmanet-dsr-10.txt, July 2004.
[24]V. D. Park and M. S. Corson, “Temporally-Ordered Routing Algorithm (TORA) version 1: functional speciations”, Internet draft, draft-ietfmanet-tora-spec-01.txt, April 2002
[25]Z. Haas, M. Pearlman, and P. Samar, “Zone Routing Protocol (ZRP)”, IETF Internet Draft, draft-ietf-manet-zrp-04.txt, July 2002.
[26]S.Y. Ni, Y.C. Tseng, Y-S. Chen and J. P. Sheu, “The Broadcast Storm Problem in a Mobile Ad Hoc Network”, Proceedings of IEEE/ACM International Conference on Mobile Computing and Networking (MobiCom 1999), pp. 151-162, Seattle, Washington, USA, Aug. 1999.
[27]K.W. Chin, J. Judge, A. Williams and R. Kermode, “Implementation Experience with MANET Routing Protocols”, ACM Sigcomm Computer Communication, Review, vol. 32, no. 5, pp. 49-59, Nov. 2002.
[28]Y. Ko and N.H. Vaidya, “Location-aided routing (LAR) in mobile ad hoc networks”, Proceedings of IEEE/ACM International Conference on Mobile Computing and Networking (MobiCom 1998), vol. 6, no. 4, pp. 307-321, Dallas, Texas, USA, Oct. 1998.
[29]C.-K. Toh. “Associativity-Based Routing for Ad Hoc Mobile Networks”, Wireless Personal Communications Journal, Special Issue on Mobile Networking and Computing Systems, vol. 4, no. 2, pp. 103-139, Mar. 1997.
[30]R. Tatchikou, S. Biswas and F. Dion “Cooperative Vehicle Collision Avoidance using Inter-vehicle Packet Forwarding”, Proceedings of Global Communications (Globecom 2005), vol. 5, pp. 2762-2766, St. Louis, USA, Nov. 2005.
[31]L. Wischof, A. Ebner, and H. Rohling, “Information Dissemination in Self-Organizing Intervehicle Networks”, IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 1, pp. 90-101, Mar. 2005.
[32]B. Karp and H.T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks”, Proceedings of IEEE/ACM International Conference on Mobile Computing and Networking (MobiCom 2000), pp. 243-354, Boston, Massachusetts, USA, Aug. 2000.
[33]F. Granelli, G. Boato, and D. Kliazovich, “MORA: a Movement-Based Routing Algorithm for Vehicle Ad Hoc Networks”, Proceedings of 1st IEEE Workshop on Automotive Networking and Applications (AutoNet 2006), San Francisco, USA, pp. 256-265, Dec. 2006.
[34]R.A. Santos, R.M. Edwards, L.N. Seed and A. Edward++, “A Location-Based Routing Algorithm for Vehicle to Vehicle communication”, Proceedings of IEEE International Conference on Computer Communications and Networks (ICCCN 2004), pp. 221-226, Chicago, USA, Oct. 2004.
[35]H. Menouar, M. Lenardi, and F. Filali, “A Movement Prediction-based Routing Protocol for Vehicle-to-Vehicle Communications”, Proceedings of IEEE Vehicle-to-Vehicle Communications (V2VCOM 2005), pp. 1-8, San Diego, California, USA, July 2005.
[36]T. Taleb, E. Sakhaee, A. Jamalipour, K. Hashimoto, N. Kato and Y. Nemoto, “A Stable Routing Protocol to Support ITS Services in VANET Networks”, IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp. 3337-3347, Nov. 2007.
[37]T. Taleb, M. Ochi, A. Jamalipour, N. Kato, and Y. Nemoto, “An Efficient Vehicle-Heading Based Routing Protocol for VANET Networks”, Proceedings of IEEE Wireless Communications and Networking Conference (WCNC2006), vol. 4, pp. 2199-2204, Las Vegas, USA, April 2006.
[38]W. Su, S.J. Lee, and M. Gerla, “Mobility Prediction and Routing in Ad Hoc Wireless Networks, International Journal of Network Management, vol. 11, no. 1, pp. 3-30, 2001.
[39]T.S. Rappaport, “Wireless Communications: Principles and Practice”, Prentice Hall, Upper Saddle River, NJ, Oct. 1995.
[40]SUMO Simulation of Urban MObility. http://sumo.sourceforge.net
[41]S. McCanne and S. Floyd, NS-2 Simulator, http://www.isi.edu/nsnam/ns