研究生: |
劉奇峰 Liu, Chi-Feng |
---|---|
論文名稱: |
NiO/YSZ複合氧化物圖案化之研究 Patterning on NiO/YSZ composite oxide |
指導教授: |
方冠榮
Fung, Kuan-Zong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 氧化鎳-釔安定氧化鋯 、薄帶成形技術 、固態氧化物燃料電池 、圖案化 、微影技術 |
外文關鍵詞: | NiO-YSZ, SOFC, patterning, lithography technique, tape casting |
相關次數: | 點閱:60 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
增加Ni/YSZ陽極與YSZ反應界面表面積為提升固態氧化物燃料電池效率的有效方法之一。以規則性圖案製作方法應用在NiO/YSZ表面,具有快速及大面積化的應用潛力。
本研究以微影技術於P-type矽晶圓上建立不同尺寸之SU8負型光阻線陣圖案,再將圖案轉移到PDMS上,完成具規則圖案之PDMS模具。利用薄帶成形法及具規則圖案之PDMS模具製作具規則圖案之NiO-YSZ坯體基板,於1200℃燒成後完成具規則圖案之NiO-YSZ基板製作。將具規則圖案之NiO-YSZ基板於800℃及H2氣氛下進行還原處理後得到具規則圖案之Ni-YSZ基板。而Ni-YSZ/YSZ結構之製作,先以分散液鍍膜法於具規則圖案之NiO-YSZ基板上製備YSZ層,再於1400℃進行燒結,最後於800℃及H2氣氛下進行還原處理後得到。
研究結果顯示,利用具規則圖案之PDMS模具可將圖案有效地轉移,轉移的PDMS圖案深寬比最大可達2.77且不產生斷裂;於具規則圖案之NiO-YSZ坯體基材中,深寬比為1.57的圖案脫膜時會產生扭曲,而深寬比為2.19時圖案會由圖案基部斷裂;1200℃燒成後,具規則圖案之NiO-YSZ基板及圖案形狀保持完整且無發生裂縫或崩塌,表面積最大增加146%;經還原後,Ni-YSZ基板形成孔洞結構且圖案並不因為體積改變而發生破裂或崩塌的現象;Ni-YSZ/YSZ結構中,YSZ電解質緻密、與Ni-YSZ圖案接連良好且無間隙產生。經SEM顯微結構觀察,緻密YSZ薄膜也完整地被覆在NiO/YSZ規則圖案上。因此,藉NiO/YSZ規則圖案製作,預期將可有效地改善SOFC的轉換效率。
Increasing the interface area between Ni/YSZ (anode) and YSZ (electrolyte) is an effective way to enhance the performance of solid oxide fuel cells. Patterning on the surface of NiO/YSZ was proposed as a novel method to increase the surface area of NiO/YSZ. Patterned PDMS mold was first fabricated by replicating various SU8 patterns on Si wafers from photo-lithography technique. Patterned NiO-YSZ substrate was obtained after fabricating NiO-YSZ green tape from the PDMS mold. The pattern transfer of PDMS mold from SU8 patterns was successful. A fracture-free pattern with the maximum aspect ratio of 2.77 was obtained. However, after pattern transferring from PDMS mold, the patterns with aspect of 1.57 were significantly distorted. The patterns with aspect ratio of 2.19 were mostly damaged. These deformed and incomplete patterns were mainly caused by the friction between PDMS mold and ceramic green body during the mold releasing process. When the aspect ratio of the pattern reduced to below 0.91, patterns of PDMS could be completely transferred to the surface of NiO/YSZ. After firing at 1200℃, the shape of patterns on NiO/YSZ surface remained unchanged. Compared to the flat surface of un-patterned NiO/YSZ, 146% increased surface area was observed in the patterns with aspect ratio of 1.57. Furthermore, a 17μm thick dense YSZ film was deposited on these patterned NiO/YSZ surface. A well-adhered YSZ film without any de-lamination was observed. In order to reduce NiO/YSZ to Ni/YSZ cermet, patterned NiO/YSZ samples were exposed to H2 at 800℃. Finally, desired electrolyte/electrode interface with a dense YSZ film covered on a patterned Ni/YSZ anode was obtained. It’s expected that the performance of SOFC would be enhanced when such a patterned structure is applied.
1. D. Hotza, P. Greil, Materials Science and Engineering, A202, 206-217 (1995).
2. R.M.C. Clemmer, S.F. Corbin, Solid State Ionics, 166, 251–259 (2004).
3. H. Abe, K. Murata, T. Fukui, W.-J. Moon, K. Kaneko, M. Nai, Thin Solid Films, 496, 49 – 52 (2006).
4. R.J. Gorte*, H. Kim, J.M. Vohs, Journal of Power Sources, 106, 10–15 (2002).
5. M. Fujimori, S. Heike, Y. Terada and T. Hashizume, Nanotechnology, 15, S333–S336 (2004).
6. J. Derakhshandeh, Y. Abdi, S. Mohajerzadeh, H. Hosseinzadegan, E. Asl. Soleimani, H. Radamson, Materials Science and Engineering, B124–125, 354–358 (2005).
7. N. Iwata, T. Wakayama, S. Yamada, Sensors and Actuators, A111, 26–31 (2004).
8. S. Setzu, P. Ferrand, G. Lérondel, R. Romestain, Applied Surface Science, 186, 588-593 (2002).
9. Hong Xiao著,羅正忠 張鼎張譯,半導體製程技術導論,台灣培生教育出版股份有份公司,台灣,P.216 (2001).
10. T. Fukui , K. Murata, S. Ohara, H. Abe, M. Naito, K. Nogi, Journal of Power Sources, 125, 17–21 (2004).
11. S.A. Sherif, F. Barbir, T.N. Veziroglu, Solar Energy, 78, 647–660 (2005).
12. W.R. Grove, Philosophical Magazine, 14, 127 (1839).
13. W. Nernest, Elektrochemischer, 6, 41 (1899).
14. E.Baur and H.Preis, Elektrochemischer, 43, 563 (1937).
15. C. Song, Catalysis Today, 77, 17 (2001).
16. B.C.H.Steele and A. Heinzel, Nature, 414, 345 (2001).
17. M.A. Laughton, Engineering Science and Education Journal, 7-16 (2002).
18. T. Fukui, S. Ohara, K. Murata, H. Yoshida, K. Miura, and T. Inagaki, Journal of Power Sources, 106, 142 (2002).
19. N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, T. Kawada, and M. Dokiya, Journal of the Electrochemical Society, 147, 3178 (2000).
20. W.Z. Zhu and S.C. Deevi, Materials Science and Engineering, A362, 228 (2003).
21. H. Uchida, M. Sugimoto, and M. Watanabe, Processing of the Seventh International Symposium on Solid Oxide Fuel Cells(SOFC-VI), Tsukuba, Ibaraki, Japan, 653 (2001).
22. O.A. Marina, C. Bagger, S. Primdahl, and M. Mogensen, Solid State Ionics, 123, 199 (1999).
23. O.A. Marina, N.L. Canfield, and J.W. Stevenson, Solid State Ionics, 149, 21 (2002).
24. S.C. Singhal, MRS Bulletin, March, 16 (2000).
25. K.Z. Fung, H.D. Baek, and A.V. Virkar, Solid State Ionics, 52, 199 (1992).
26. T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, and Y. Takita, Journal of the American Ceramic Society, 145, 3177 (1993).
27. S.P. Simmer, J.F. Bonnet, N.L. Canfield, K.D. Meinhardt, J.P. Shelton, V.L. Sprenkle, and J.W. Stevenson, Journal of Power Sources, 113, 1 (2003).
28. O. Yamamoto, Y. Takeda, R.Kanno, and M. Noda, Solid State Ionics, 22, 241 (1987).
29. B.C.H. Steele, Solid State Ionics, 86-88, 1223 (1996).
30. S.C. Singhal, Proceeding of the 2nd International Symposium on Solid Oxide Fuel Cells, F. Gross, P. Zeghers, S.C. Singhal and H. Iwahara, Eds., (1991) 25.
31. N.Q. Minh, C.R. Horne, F. Lin, and P.R. Staszak, Proceeding of the 1st International Symposium on Solid Oxide Fuel Cells, S.C. Singhal, Ed., New York city, U.S.A., (1989) 307.
32. H. Tagaki, H. Taira, A. Shiratori, S. Koyabashi, Y. Sungimoto, and K. Tomono, Proceeding of the 3rd International Symposium on Solid Oxide Fuel Cells, S.C. Singhal and H. Iwahara, Eds., Hawaii, U.S.A., (1993) 738.
33. A.O. Isenberg, Proceeding of the High Temperature Solid Oxide-Electrolytes Conference, New York city, U.S.A., 5 (1983).
34. D.C. Fee, R.K. Steunberg, T.D. Claar, R.B. Poeppel, and J.P. Ackerman, Fuel Cell Seminar, Washing,D.C., U.S.A., (1983) 74.
35. C.C. McPheeters, D.C. Fee, R.B. Poeppel, T.D. Claar, D.E. Busch, B.K. Flandermeyer, T.E. Easler, J.T. Durek, and J.J. Picciolo, Fuel Cell Seminar, Washing, D.C. U.S.A., (1986) 44.
36. K. Honegger, J. Krumeich, R. Diethelm, Proceeding of the 4th European Fuel Cell Forum, Lucerne, Switzerland, Ed.: A.J. McEvoy, 29 (2000).
37. G.M. Christie, P.Nammensma, J.P.P.Huijsmans, Proceeding of the 4th European Fuel Cell Forum, Lucerne, Switzerland, Ed.: A.J. McEvoy ,3 (2000).
38. S. Linderoth, Proceeding of the 4th European Fuel Cell Forum, Lucerne, Switzerland, Ed.: A.J. McEvoy, 19 (2000).
39.T. Setoguchi, K. Okamoto, K. Eguchi, H. Arai, Journal of the Electrochemical Society, 139 , 2875 (1992)
40. S. Primdahl, PhD Thesis, University of Twente, Twente, The Netherlands (1999).
41. B. de Boer, PhD Thesis, University of Twente, Twente, The Netherlands (1998).
42. Anja Bieberle, PhD Thesis, University of Dipl.-Ing., (2000).
43. J. Mizusaki, H. Tagawa, T. Saito, T. Yamamura, K. Kamitani, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippomatsu, S. Nakagawa, K. Hashimoto, Solid State Ionics, 70/71 , 52 (1994).
44. J. Mizusaki, T. Yamamura, N. Mori, H. Tagawa, K. Hirano, S. Ehara, T. Takagi, M. Hishinuma, H. Sasaki, T. Sogi, Y. Nakamura, K. Hashimoto, Proceeding of the 17th Risø International Symposium on Material Science: High Temperature Electrochemistry: Ceramics and Metals, Risø National Laboratory, Roskilde, Denmark, 363 (1996).
45. S.P. Jiang, S.P.S. Badwal, Journal of the electrochemical society, 144, 3777 (1997).
46. P.Holtappels, L.G.J. de Haart, U. Stimming, Journal of the electrochemical society, 146, 2976 (1999).
47. James S. Reed, Principles of Ceramics Processing Second Edition, P526 (1995).
48. James S. Reed, Principles of Ceramics Processing Second Edition, P532 (1995).
49. James S. Reed, Principles of Ceramics Processing Second Edition, P525 (1995).
50. Y. Zhang , X. Huang , Z. Lu , X. Ge, J. Xu , X. Xin , X. Sha , W. Su, Solid State Ionics, 177, 281 – 287 (2006).
51. M. Radovic, E. Lara-Curzio, Acta Materialia, 52, 5747–5756 (2004).
52. J. Van herle , R. Ihringer, R. Vasquez Cavieres, L. Constantin, O. Bucheli, Journal of the European Ceramic Society, 21, 1855–1859 (2001).
53. D. Simwonis, H. ThuÈlen, F.J. Dias, A. Naoumidis, D. StoÈver, Journal of Materials Processing Technology, 92-93, 107-111 (1999).
54. Hong Xiao著,羅正忠 張鼎張譯,半導體製程技術導論,台灣培生教育出版股份有份公司,台灣,P.175 (2001).
55. A. Schneider, B. Su, T.W. Button, L. Singleton, O. Wilhelmi, S.E. Huq, P.D. Prewett, R.A. Lawes, Microsystem Technologies, 8, 88-92 (2002).
56. C.H. Lin, G.B. Lee, B.W. Chang and G.L. Chang, Journal of Micromechnics and Microengeering, 12, 590–597 (2002).
57. H. Lorenz, M. Despont, P. Vettiger, P. Renaud, Microsystem Technologies, 4, 143~146 (1998).
58. L. Dellmann, S. Roth, C. Beuret, G.-A. Racine, H. Lorenz, M. Despont, P. Renaud, Sensors and Actuators A, 70, 42-47 (1998).