| 研究生: |
劉峮至 Liu, Chun-Jhih |
|---|---|
| 論文名稱: |
共同處理2-去氧葡萄糖和每福敏可加成抑制腫瘤細胞生長 Cotreatment of 2-deoxyglucose and metformin additively inhibits the growth of cancer cells |
| 指導教授: |
張文粲
Chang, Wen-Tsan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 能量代謝 、癌症治療 、2-去氧葡萄糖 、每福敏 |
| 外文關鍵詞: | tumor energy metabolism, tumor therapy, 2-deoxyglucose, metformin |
| 相關次數: | 點閱:130 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
正常細胞在進行能量代謝時,在氧氣充足的情況主要是經由糖解作用、檸檬酸循環和粒線體氧化磷酸化進行呼吸作用產生ATP、二氧化碳和水,又稱為有氧呼吸。而在缺氧的情況下則會經由糖解作用產生乳酸和ATP,又稱為無氧呼吸。而腫瘤細胞以及生長快速的細胞不論在有氧或是無氧的情況下皆偏好使用糖解作用產生ATP和乳酸,此現象即稱為瓦氏效應(Warburg effect)。在腫瘤治療方面目前主要是以外科手術、放射線治療和化學治療為主,放射線治療主要是藉由破壞癌細胞的DNA使其進行細胞凋亡,化學治療主要是利用抗癌藥物抑制腫瘤細胞DNA生合成,抑制細胞微管增生以及針對特定目標蛋白抑制使得細胞凋亡。
然而化學治療雖然可以毒殺腫瘤細胞,但是也會影響其他正常細胞(如腸道表皮細胞和骨髓細胞)的生長,同時也會篩選出具有抗藥性的癌細胞,使日後治療的難度提高。而目前有文獻指出可以針對腫瘤細胞偏好使用糖解作用的特性,使用抑制能量代謝的抗癌藥物進行治療。
在本篇研究中首先我先分析實驗室擁有的六株癌細胞(HeLa, MCF7, MDA-MB-231, PC3, A549, H1299)的生長速率發現其生長速率最快的是H1299而生長速率最慢的是MCF7,並以西方點墨法分析這六株癌細胞p53及相關蛋白的表現量,發現PC3和H1299的p53蛋白幾乎不表現。接下來我利用糖解作用抑制劑2-去氧葡萄糖(2-deoxyglucose, 2-DG)處理六株癌細胞和穩定抑制檸檬酸合成酶HeLa細胞並分析其生長速率,發現2-DG對於HeLa、 PC3、MDA-MB-231的影響較大,對A549、MCF7和H1299的影響較小,而2-DG對穩定抑制檸檬酸合成酶HeLa細胞的生長速率影響不大。接下來我利用第二型糖尿病用藥每幅敏(metformin) 處理六株癌細胞和穩定抑制檸檬酸合成酶HeLa細胞並分析其生長速率,由實驗結果發現metformin對細胞生長影響不大,僅在高濃度(10, 20mM)才會使細胞生長較慢,而對穩定抑制檸檬酸合成酶HeLa僅在20mM對生長速率的影響較為明顯。
由於2-DG和metformin單獨處理細胞對細胞生長影響不大,並且有文獻指出將2-DG和metformin共同處理細胞會顯著抑制腫瘤細胞生長,故我利用2-DG和metformin個10和20mM處理六株癌細胞和穩定抑制檸檬酸合成酶HeLa細胞,由實驗結果發現共同處理2-DG和metformin對細胞生長影響具有加成作用,並誘導細胞進行細胞凋亡,而這種情形在高度利用糖解作用的穩定抑制檸檬酸合成酶HeLa中更為顯著。
綜合以上實驗結果,發現共同處理2-DG和metformin對於影響細胞生長具有加成性且會誘導細胞進行凋亡,這對於以細胞能量代謝作為癌症治療標的具有很大的參考價值。
Summary
As tumor gets energy by energy metabolism, it relies on glycolysis to get abundant adenosine triphosphate (ATP), lactate and macromolecular for growth. This phenomenon calls “Warburg effect.” The ways for tumor therapy are including surgery, radiation therapy and chemotherapy. Surgery is used to treat the patient by removing tumors. The radiation therapy is used to kill tumor cell by breaking the DNA of the tumor cell. The chemotherapy is using anticancer drug to kill cancer by inhibiting the DNA synthesis of tumor, inhibiting the microtuble proliferation and inhibiting the target protein. However, tumor cell has multiple drug resistance (MDR) after treating anticancer drugs, and it may decrease the efficacy of the chemotherapy. As the result, it is important to take anticancer drugs targeting another pathway such as tumor energy metabolism to treat cancer.
In the research, I use different dosage of 2-deoxy glucose (2-DG) and metformin to treat HeLa, MCF7, MDA-MB-231, PC3, A549, H1299 and HeLa that is stable knockdown the citrate synthase (CS). I found that after treating these drugs, the inhibition of the tumor cell growth is not clear. And I cotreated 10 and 20 mM 2-DG and metformin on these tumor cell lines. I found the inhibition of the tumor cell growth is significant. I analyzed the cell apoptosis of these tumor cell lines after cotreating 2-DG and metformin by flow cytometer. I found that it will induce cell apoptosis after cotreating drugs. As the result, I found that there is additive effect of inhibiting tumor cell growth after cotreating 2-DG and metformin.
Key words: energy metabolism, tumor therapy, 2-DG, metformin
INTRODUCTION
The differentiated tissue metabolizes glucose to get ATP and pyruvate. And pyruvate enters TCA cycle and mitochondrial oxidative phosphorylation to get more ATP and carbon dioxide. When there is lack of oxygen, tissue metabolizes glucose by glycolysis and gets ATP and lactate. This is called anaerobic respiration. The proliferative cell and cancer cell prefer to use glycolysis to get ATP and produce lactate. This is called aerobic glycolysis and Warburg effect. (Vander Heiden et al., 2009)
There are several ways to treat tumor, including surgery, radiation therapy and chemotherapy. Doctors take surgery to remove tumor. Radiation therapy breaks DNA of tumor cell to make cancer cell apoptosis. Chemotherapy is treated by using anticancer drugs to kill cancer cell by inhibiting the DNA synthesis of tumor, inhibiting the microtuble proliferation and inhibiting the target protein. However, the anticancer drug may kill the other fast growing cells such as bone marrow cell (Vander Heiden, 2011). The cancer cell may develop multiple drug resistance (MDR) mechanism to against anticancer drug, and it will decrease the efficacy of chemotherapy (Vander Heiden, 2011).
2-deoxy glucose (2-DG) is the analog of glucose. It can inhibit glycolysis after phosphorylated by hexokinase. It is known to make tumor cell apoptosis (Aft et al., 2002). Metformin known is treated type 2 diabetes is known to inhibit the growth of tumor cell(He et al., 2012; Lee et al., 2012). It is reported that metformin cotreated with other anticancer drugs can increase the sensitivity of chemotherapy (Hirsch et al., 2009; Iliopoulos et al., 2011).
The research is to find the effect of inhibiting the tumor cell growth after treating glycolysis inhibitor, 2-DG, and metformin individually and together.
Materials and Methods
Cell culture: Cancer cell lines (HeLa, MCF7, MDA-MB-231, PC3, A549, H1299) are incubated with DMEM and RPMI supplemented with 10% FCS and 1% antibiotics and antimitotic at 37˚C and 5% CO2.
Reagents: 2-DG and metformin were purchased from Sigma-Aldich. DMEM was purchased from Invitrogen.
Flow cytometry analysis: Flow cytometry analysis was using FL1 and FL3 of FAS can purchased from BD
Results and Discussion
I used different dosage of 2-deoxy glucose (2-DG) and metformin to treat HeLa, MCF7, MDA-MB-231, PC3, A549, H1299 and HeLa that is stable knockdown the citrate synthase (CS). I found that after treating these drugs individually, the inhibition of the tumor cell growth is not clear. I found that 10 and 20 mM 2-DG can inhibit the growth of cancer cell significantly. 20 mM metformin could inhibit tumor cell little significantly. And then I cotreated 10 and 20 mM 2-DG and metformin on these tumor cell lines. I found the inhibition of the tumor cell growth is significant. I analyzed the cell apoptosis of these tumor cell lines after cotreating 2-DG and metformin by flow cytometer. I found that it will
induce cell apoptosis after cotreating the two drugs. As the result, I found that there is additive effect of inhibiting tumor cell growth after cotreating 2-DG and metformin. The results of my research indicated that anticancer drug could be treated through tumor energy metabolism.
1. Aft, R.L., Zhang, F.W., and Gius, D. (2002). Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. British journal of cancer 87, 805-812.
2. Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N., Nakano, K., Bartrons, R., Gottlieb, E., and Vousden, K.H. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107-120.
3. Buzzai, M., Jones, R.G., Amaravadi, R.K., Lum, J.J., DeBerardinis, R.J., Zhao, F., Viollet, B., and Thompson, C.B. (2007). Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer research 67, 6745-6752.
4. Chabner, B.A., and Roberts, T.G., Jr. (2005). Timeline: Chemotherapy and the war on cancer. Nature reviews Cancer 5, 65-72.
5. Chen, G., Xu, S., Renko, K., and Derwahl, M. (2012). Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. The Journal of clinical endocrinology and metabolism 97, E510-520.
6. Cheng, L., Alexander, R.E., Maclennan, G.T., Cummings, O.W., Montironi, R., Lopez-Beltran, A., Cramer, H.M., Davidson, D.D., and Zhang, S. (2012). Molecular pathology of lung cancer: key to personalized medicine. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 25, 347-369.
7. Dong, L., Zhou, Q., Zhang, Z., Zhu, Y., Duan, T., and Feng, Y. (2012). Metformin sensitizes endometrial cancer cells to chemotherapy by repressing glyoxalase I expression. The journal of obstetrics and gynaecology research 38, 1077-1085.
8. Dwarakanath, B., and Jain, V. (2009). Targeting glucose metabolism with 2-deoxy-D-glucose for improving cancer therapy. Future Oncol 5, 581-585.
9. El-Mir, M.Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M., and Leverve, X. (2000). Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. The Journal of biological chemistry 275, 223-228.
10. El Mjiyad, N., Caro-Maldonado, A., Ramirez-Peinado, S., and Munoz-Pinedo, C. (2011). Sugar-free approaches to cancer cell killing. Oncogene 30, 253-264.
11. Evans, J.M., Donnelly, L.A., Emslie-Smith, A.M., Alessi, D.R., and Morris, A.D. (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304-1305.
12. Ferreira, L.M., Hebrant, A., and Dumont, J.E. (2012). Metabolic reprogramming of the tumor. Oncogene 31, 3999-4011.
13. Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., et al. (2007). Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812-3819.
14. Fogal, V., Richardson, A.D., Karmali, P.P., Scheffler, I.E., Smith, J.W., and Ruoslahti, E. (2010). Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Molecular and cellular biology 30, 1303-1318.
15. Garten, A., Petzold, S., Korner, A., Imai, S., and Kiess, W. (2009). Nampt: linking NAD biology, metabolism and cancer. Trends in endocrinology and metabolism: TEM 20, 130-138.
16. Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70.
17. He, H., Zhao, Z., Chen, J., Ni, Y., Zhong, J., Yan, Z., Li, Y., Liu, D., Pletcher, M.J., and Zhu, Z. (2012). Metformin-based treatment for obesity-related hypertension: a randomized, double-blind, placebo-controlled trial. Journal of hypertension 30, 1430-1439.
18. Hirsch, H.A., Iliopoulos, D., Tsichlis, P.N., and Struhl, K. (2009). Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer research 69, 7507-7511.
19. Iliopoulos, D., Hirsch, H.A., and Struhl, K. (2011). Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer research 71, 3196-3201.
20. Ito, K. (2014). Prostate cancer in Asian men. Nature reviews Urology 11, 197-212.
21. Kaelin, W.G., Jr., and Thompson, C.B. (2010). Q&A: Cancer: clues from cell metabolism. Nature 465, 562-564.
22. Keith, R.L., and Miller, Y.E. (2013). Lung cancer chemoprevention: current status and future prospects. Nature reviews Clinical oncology 10, 334-343.
23. Kim, J.W., and Dang, C.V. (2006). Cancer's molecular sweet tooth and the Warburg effect. Cancer research 66, 8927-8930.
24. Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell metabolism 3, 177-185.
25. Lee, J.H., Jeon, S.M., Hong, S.P., Cheon, J.H., Kim, T.I., and Kim, W.H. (2012). Metformin use is associated with a decreased incidence of colorectal adenomas in diabetic patients with previous colorectal cancer. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 44, 1042-1047.
26. Liang, J., Shao, S.H., Xu, Z.X., Hennessy, B., Ding, Z., Larrea, M., Kondo, S., Dumont, D.J., Gutterman, J.U., Walker, C.L., et al. (2007). The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nature cell biology 9, 218-224.
27. Lin, S.X., Chen, J., Mazumdar, M., Poirier, D., Wang, C., Azzi, A., and Zhou, M. (2010). Molecular therapy of breast cancer: progress and future directions. Nature reviews Endocrinology 6, 485-493.
28. Lunt, S.Y., and Vander Heiden, M.G. (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual review of cell and developmental biology 27, 441-464.
29. Matoba, S., Kang, J.G., Patino, W.D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P.J., Bunz, F., and Hwang, P.M. (2006). p53 regulates mitochondrial respiration. Science 312, 1650-1653.
30. Metcalfe, K., Lynch, H.T., Ghadirian, P., Tung, N., Olivotto, I., Warner, E., Olopade, O.I., Eisen, A., Weber, B., McLennan, J., et al. (2004). Contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 22, 2328-2335.
31. Moding, E.J., Kastan, M.B., and Kirsch, D.G. (2013). Strategies for optimizing the response of cancer and normal tissues to radiation. Nature reviews Drug discovery 12, 526-542.
32. Mohanti, B.K., Rath, G.K., Anantha, N., Kannan, V., Das, B.S., Chandramouli, B.A., Banerjee, A.K., Das, S., Jena, A., Ravichandran, R., et al. (1996). Improving cancer radiotherapy with 2-deoxy-D-glucose: phase I/II clinical trials on human cerebral gliomas. International journal of radiation oncology, biology, physics 35, 103-111.
33. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S.N., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50-56.
34. Narod, S.A. (2012). Breast cancer in young women. Nature reviews Clinical oncology 9, 460-470.
35. Pernicova, I., and Korbonits, M. (2014). Metformin--mode of action and clinical implications for diabetes and cancer. Nature reviews Endocrinology 10, 143-156.
36. Pfeiffer, T., Schuster, S., and Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504-507.
37. Pouyssegur, J., Dayan, F., and Mazure, N.M. (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441, 437-443.
38. Semenza, G.L. (2007). Hypoxia-inducible factor 1 (HIF-1) pathway. Science's STKE : signal transduction knowledge environment 2007, cm8.
39. Shaw, R.J., Lamia, K.A., Vasquez, D., Koo, S.H., Bardeesy, N., Depinho, R.A., Montminy, M., and Cantley, L.C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646.
40. Singh, D., Banerji, A.K., Dwarakanath, B.S., Tripathi, R.P., Gupta, J.P., Mathew, T.L., Ravindranath, T., and Jain, V. (2005). Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft [et al] 181, 507-514.
41. Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., and McGuire, W.L. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177-182.
42. Song, C.W., Lee, H., Dings, R.P., Williams, B., Powers, J., Santos, T.D., Choi, B.H., and Park, H.J. (2012). Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Scientific reports 2, 362.
43. Suva, L.J., Washam, C., Nicholas, R.W., and Griffin, R.J. (2011). Bone metastasis: mechanisms and therapeutic opportunities. Nature reviews Endocrinology 7, 208-218.
44. Swietach, P., Vaughan-Jones, R.D., and Harris, A.L. (2007). Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer metastasis reviews 26, 299-310.
45. Vander Heiden, M.G. (2011). Targeting cancer metabolism: a therapeutic window opens. Nature reviews Drug discovery 10, 671-684.
46. Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.
47. Walboomers, J.M., Jacobs, M.V., Manos, M.M., Bosch, F.X., Kummer, J.A., Shah, K.V., Snijders, P.J., Peto, J., Meijer, C.J., and Munoz, N. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. The Journal of pathology 189, 12-19.
48. Wallace, D.C. (2012). Mitochondria and cancer. Nature reviews Cancer 12, 685-698.
49. Warburg, O. (1924). On the metabolism of cancer cells. Naturwissenschaften 12, 1131-1137.
50. Wolf, A., Mukherjee, J., Hawkins, C., and Guha, A. (2008). Hexokinase 2 Is an Important Mediator of the Warburg Effect in Glioblastomas. Neuro-Oncology 10, 763-763.
51. Ben Sahra, I., Laurent, K., Giuliano, S., Larbret, F., Ponzio, G., Gounon, P., Le Marchand-Brustel, Y., Giorgetti-Peraldi, S., Cormont, M., Bertolotto, C., et al. (2010). Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer research 70, 2465-2475.
52. Cheong, J.H., Park, E.S., Liang, J., Dennison, J.B., Tsavachidou, D., Nguyen-Charles, C., Wa Cheng, K., Hall, H., Zhang, D., Lu, Y., et al. (2011). Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models. Molecular cancer therapeutics 10, 2350-2362.
53. Lin, C.C., Cheng, T.L., Tsai, W.H., Tsai, H.J., Hu, K.H., Chang, H.C., Yeh, C.W., Chen, Y.C., Liao, C.C., and Chang, W.T. (2012). Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Scientific reports 2, 785.
54. Tomic, T., Botton, T., Cerezo, M., Robert, G., Luciano, F., Puissant, A., Gounon, P., Allegra, M., Bertolotto, C., Bereder, J.M., et al. (2011). Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell death & disease 2, e199.
55. Ben Sahra, I., Laurent, K., Giuliano, S., Larbret, F., Ponzio, G., Gounon, P., Le Marchand-Brustel, Y., Giorgetti-Peraldi, S., Cormont, M., Bertolotto, C., et al. (2010). Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer research 70, 2465-2475.
56. Cheong, J.H., Park, E.S., Liang, J., Dennison, J.B., Tsavachidou, D., Nguyen-Charles, C., Wa Cheng, K., Hall, H., Zhang, D., Lu, Y., et al. (2011). Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models. Molecular cancer therapeutics 10, 2350-2362.
57. Hui, L., Zheng, Y., Yan, Y., Bargonetti, J., and Foster, D.A. (2006). Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene 25, 7305-7310.
校內:2024-12-31公開