簡易檢索 / 詳目顯示

研究生: 林仁傑
Lin, Ren-jie
論文名稱: 無鉛銲錫材料在不同溫度下的動態衝擊特性研究
The Dynamic Impact Behavior of Lead-free solders at elevated temperature
指導教授: 鄭泗滄
Jeng, Syh-Tsang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 116
中文關鍵詞: 高應變率增溫應力指數SHPB
外文關鍵詞: stress exponent, high strain rates, elevated temperature, SHPB
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文應用分離式霍普金森壓縮桿 (split Hopkinson pressure bar, SHPB) 實驗設備來進行Sn63Pb37、SAC105以及SAC305銲錫材料的動態衝擊實驗,實驗之應變率範圍為1,000 ~ 3,000 s-1。
    SHPB增溫實驗的測試溫度為室溫、60℃以及90℃,實驗用之試片在製造過程中則是以爐冷方式來進行冷卻。
    為了提高實驗的準確性,在實驗過程中也嘗試以一些方法來減少溫度上升後所帶來的影響。
    在銲錫材料的應力指數計算方面,是以高應變率實驗以及擬靜態壓縮實驗的數據來進行計算,藉此來觀察三種銲錫材料的特性。
    結果顯示,銲錫材料的應力指數數值,會隨著測試溫度的上升而變小。
    計算比較銲錫材料試片在5 %、10 %、15 %以及20 %應變所對應的應力指數,可以發現,5 %應變所對應的應力指數數值會大於10 %、15 %以及20 %應變所對應的應力指數數值,並隨著試片應變百分比的增加而呈現出逐步下降的趨勢。

    The mechanical properties of Sn63Pb37, SAC105 and SAC305 solders have been measured at high strain rates (1,000 ~ 3,000 s-1) using SHPB (split Hopkinson pressure bar) apparatus.
    Specimens were produced by quenching in air from the melt. Measurements were made at room temperature, 60 and 90 degrees Centigrade.
    For better accuracy, we utilized some techniques to decrease the effects caused by temperature rising.
    In order to find the stress exponents of solders, we measured the quasi-static properties of solder materials and use the results of both high and low strain rate tests to calculate the stress exponents.
    The results showed that the elevated temperatures had effect on the stress exponents of solders. The higher test temperature will cause the value of stress exponent down.
    In high strain rate tests (2,000 ~ 3,000 s-1), the Sn63Pb37, SAC105 and SAC305 solders all had obviously temperature dependency.
    Observing the stress exponents of solders characterized at 5 %, 10 %, 15 % and 20 % strain, we can find that the value of stress exponent will change with different strains.

    簽名頁 授權書 誌謝 全文中文摘要 全文英文摘要 目錄 表目錄 圖目錄 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 1-3 研究目的 3 1-4 論文大綱 4 第二章 文獻回顧 5 2-1 SHPB實驗設備的應用 5 2-2 無鉛銲錫材料於增溫條件下之機械性質研究 8 第三章 實驗理論 13 3-1 一維縱向彈性應力波傳理論[21-25] 13 3-1-1 長桿的一維縱向彈性應力波傳理論與D’Alembert’s solution 13 3-1-2 一維縱向波在兩桿介面間的反射與穿透行為 19 3-1-3 長桿中應力波之形成 22 3-2 分離式霍普金森壓縮桿之原理[7][26-30] 24 3-3 SHPB實驗方法與可能遭遇之問題[31-39] 28 3-3-1 桿件材料的影響 29 3-3-2 波散 (wave dispersion)效應 29 3-3-3 SHPB實驗中的延遲時間問題 31 3-3-4 應力不均勻性問題與波形整形 (pulse shaping)技術 32 3-3-5 一波與二波法 (1-wave and 2-wave method) 33 3-3-6 試片的慣性 (inertia)效應 34 3-3-7 試片尺寸對於實驗之影響 35 3-3-8 試片與桿件接觸面間之摩擦 (friction)效應 36 3-4 長桿上之溫度分佈[40] 36 第四章 實驗方法與流程 49 4-1 實驗設備 49 4-2 實驗前的準備工作 50 4-2-1 試片之前處理 51 4-2-2 桿件材質 52 4-2-3 桿件的共軸測試 52 4-2-4 預估入射應力波的幅值 53 4-2-5 試片的慣性效應以及試片、桿件接觸面間的摩擦效應 53 4-2-6 波散效應之修正 54 4-2-7 試片應力不均勻問題以及延遲時間問題 56 4-2-8 檢視試片內部的應力平衡狀態 56 4-2-9 桿件溫升對於應變規的影響 57 4-2-10 桿件溫升對於波傳速度的影響 58 4-2-11 試片溫度之均勻性 61 第五章 SHPB增溫實驗之結果與討論 73 5-1 Sn63Pb37、SAC105以及SAC305於增溫狀態下之擬靜態實驗結果與討論 73 5-2 Sn63Pb37、SAC105以及SAC305於增溫狀態下之動態衝擊實驗結果與討論 87 第六章 結論及未來展望 111 參考文獻 112

    1. L. Garner, S. Sane, D. Suh, T. Byrne, A. Dani, T. Martin, M. Mello, M. Patel and R. Williams, “Finding Solutions to the Challenges in Package Interconnect Reliability,” Intel Technology Journal, Issue 4, Vol. 9, pp. 297-308, 2005.
    2. K. C. Ong, V. B. C. Tan, C. T. Lim, E. H. Wong and X. W. Zhang, “Dynamic Materials Testing and Modeling of Solder Interconnects,” 2004 Electronic Components and Technology Conference, pp. 1075-1079.
    3. H. Kolsky, “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading,” Proc. Phys. Soc. B62, pp. 676-700, 1949.
    4. J. Harding, E. O. Wood, J. D. Campbell, “Tensile Testing of Materials at Impact Rates of Strain, ” Journal of Mechanical Engineering Science, Vol. 2, No. 1, pp. 88-96, 1960.
    5. W. E. Backer, C. H. Yew, “Strain-rate Effects in the Propagation of Torsional Plastic Wave, ” Journal of Applied Mechanics, Vol. 33, No. 6, pp. 917-923, 1966.
    6. J. L. Chiddister, L. E. Malvern, “Compression-impact Testing of Aluminum at Elevated Temperatures,” Experimental Mechanics, Vol. 3, No. 4, pp. 81-90, 1963.
    7. U. S. Lindholm, L. M. Yeakley, “High Strain-rate Testing: Tension and Compression,” Experimental Mechanics, Vol. 8, No. 1, pp. 1-9, 1968.
    8. A. Gilat, X. Wu, “Elevated Temperature Testing with the Torsional Split Hopkinson Bar,” Experimental Mechanics, Vol.34, No. 2, pp. 166-170, 1994.
    9. B. Davoodi, A. Gavrus, E. Ragneau, “An Experimental and Numerical Analysis of the Heat Transfer Problem in SHPB at Elevated Temperatures, ” Measurement Science and Technology, Vol. 16, No. 10, pp. 2101-2108, 2005.
    10. 張方舉, 謝若澤, 田常津, 李玉龍, 顏怡霞, 徐艾民, “SHPB系統高溫實驗自動組裝技術,” 實驗力學, Vol. 20, No. 2, 2005.
    11. 謝若澤等人, “高溫SHPB實驗技術及其應用,” 爆炸與衝擊, Vol. 25, No. 4, 2005.
    12. 郭偉國, “高溫分離式Hopkinson壓桿技術及其應用,” 實驗力學, Vol. 21, No. 4, 2006.
    13. 夏開文, 程經毅, 胡時勝, “SHPB裝置應用於測量高溫動態力學性能的研究,” 實驗力學, Vol. 13, No. 3, pp. 307-313, 1998.
    14. S. Nemat-Nasser, J. B. Isaacs, J. E. Starrett, “Hopkinson Techniques for Dynamic Recovery Experiments, ” Proceedings of the Royal Society of London. Series A, Vol. 435, No. 1894, 1991.
    15. 趙小艷等人, “Ce對Sn-Ag-Cu系焊料合金的組織與性能影響, ” 電子元件與材料, Vol. 25, No. 6, 2006.
    16. 梁麗超等人, “參雜Sb對Sn-Ag-Cu焊料性能的影響, ” 應用科技, Vol. 34, No. 8, 2007.
    17. T.-M. K. Korhonen, P. Turpeinen, L. P. Lehman, B. Bowman, G. H. Thiel, R. C. Parkes, M. A. Korhonen, D. W. Henderson and K. J. Puttlitz, “Mechanical Properties of Near-Eutectic Sn-Ag-Cu Alloy over a Wide Range of Temperatures and Strain Rates,” Journal of Electronic Materials, Vol. 33, No. 12, pp. 1581-1588, 2004.
    18. C. R. Siviour, S. M. Walley, W. G. Proud and J. E. Field, “Mechanical Properties of SnPb and Lead-free Solders at High Rates of Strain, ” Journal of Physics D: Applied Physics, Vol. 38, No. 22, pp. 4131-4139, 2005.
    19. P. T. Vianco, J. A. Rejent and J. J. Martin, “The Compression Stress-strain Behavior of Sn-Ag-Cu Solder,” JOM, Vol. 55, No. 6, pp. 50-55, 2003.
    20. P. T. Vianco, J. A. Rejent and A. C. Kilgo, “Time-independent Mechanical and Physical Properties of the Ternary 95.5Sn-3.9Ag-0.6Cu Solder,” Journal of Electronic Materials, Vol. 32, No. 2, pp. 142-151, 2003.
    21. H. Kolsky, “Stress Waves in Solids,” Dover Publications, Inc., New York, pp. 41-54, 1963.
    22. J. F. Doyle, “Wave Propagation in Structures,” Springer-Verlag New York, Inc., New York, pp. 44-45, 1997.
    23. K. F. Graff, “Wave Motion in Elastic Solids, ” Dover Publications, Inc., New York, pp. 13-14, pp. 76-79, pp. 80-84, 1975.
    24. W. Johnson, “Impact Strength of Materials, ” Edward Arnold, London, pp. 34-35, 1972.
    25. J. A. Zukas, T. Nicholas, H. F. Swift, L. B. Greszczuk, D. R. Curran, “Impact Dynamics, ” John Wiley  Sons, Inc., New York, pp. 9-10, pp. 15-17, 1982.
    26. K. F. Graff, “Wave Motion in Elastic Solids, ” Dover Publications, Inc., New York, pp. 130-133, 1975.
    27. J. A. Zukas, T. Nicholas, H. F. Swift, L. B. Greszczuk, D. R. Curran, “Impact Dynamics, ” John Wiley  Sons, Inc., New York, pp. 287-289, 1982.
    28. S. T. Jenq, S. L. Sheu, “An Experimental and Numerical Analysis of High Strain-rate Compressional Behaviour of 6061-O Aluminum Alloys, ” J. Computers  Structures, Vol. 52, Issue 1, pp. 27-34, 1994.
    29. F. E. Hauser, “Techniques for Measuring Stress-Strain Relations at High Strain Rate, ” Experimental Mechanics, Vol. 6, No. 8, pp. 395-402, 1966.
    30. G. E. Dieter, “Mechanical Metallurgy,” McGraw-Hill Book Company, 1986.
    31. 張烜琥, “多種錫鉛及無鉛銲錫材料之動態衝擊特性研究, ” 國立成功大學航空太空工程研究所碩士論文, 2007.
    32. 陶俊林等人, “SHPB系統圓柱形試件的慣性效應分析, ” 固體力學學報, Vol. 26, No. 1, pp. 107-110, 2005.
    33. 徐明利等人, “確定SHPB實驗中延遲時間的曲線擬合法, ” 高壓物理學報, Vol. 17, No. 2, pp. 153-156, 2003.
    34. 徐明利等人, “波形整形器在酚醛樹脂的霍普金森壓桿實驗中的應用, ” 爆炸與衝擊, Vol. 22, No. 4, pp. 377-380, 2002.
    35. 胡時勝, “霍普金森壓桿技術, ” 兵器材料科學與工程, No. 11, pp. 40-47, 1991.
    36. 王曉燕等人, “SHPB實驗中端面摩擦效應研究,” 爆炸與衝擊, Vol. 26, No. 2, pp. 134-139, 2006.
    37. 劉孝敏等人, “大直徑SHPB彌散效應的二維數值分析, ” 實驗力學, Vol. 15, No. 4, pp. 371-376, 2000.
    38. 徐明利等人, “SHPB實驗中試件內早期應力平衡分析, ” 爆炸與衝擊, Vol. 23, No. 3, pp. 235-240, 2003.
    39. R-G Carlos, R Horacio, “Finite-element Simulation of Wave Propagation and Dispersion in Hopkinson Bar Test, ” Materials and Design, Vol. 27, pp. 36-44, 2006.
    40. F. P. Incropera, D. P. DeWitt, T. L. Bergman and A. S. Lavine ; 葛新石等譯, “傳熱和傳質基本原理(原著第六版), ” 化學工業出版社, 北京, pp. 92-96, 2007.
    41. 鄧志方等人, “一種高溫SHPB實驗技術中的溫度場分析, ” 實驗力學, Vol. 20, pp. 65-69, 2005.
    42. D. A. Gorham, P. H. Pope, J. E. Field, “An Improved Method for Compressive Stress-Strain Measurements at Very High Strain Rates, ” Proceedings: Mathematical and Physical Sciences, Vol. 438, No. 1902, pp. 153-170, 1992.
    43. MatWeb, http://www.matweb.com
    44. The Chemical Engineers’ Resource Page, http://www.cheresources.com
    45. U. S. Lindholm, Measurement of Mechanical Properties, Techniques of Metals Research, Vol. 5, PartⅠ, edited by R. F. Bunshah, Interscience Publishers, Inc., New York, pp. 199-271, 1971.
    46. D. A. Gorham, P. H. Pope and J. E. Field, “An Improved Method for Compressive Stress-Strain Measurements at Very High Strain Rates,” Proc.: Math. Phys. Sci., Vol. 438, No. 1902, pp. 153-170, 1992.
    47. E. Bayraktar, S. Altintas, “Some Problems in Steel Sheet Forming Processes, ” Journal of Materials Processing Technology, pp. 83-89, 1998.
    48. X. Q. Shi, Z. P. Wang, W. Zhou, H. L. J. Pang and Q. J. Yang, “A New Creep Constitutive Model for Eutectic Solder Alloy,” Journal of Electronic Packaging, Vol. 124, pp. 85-90, 2002.
    49. E. H. Wong, C. S. Selvanayagam, S. K. W. SEAH, W. D. Van Driel, J. F. J. M. Caers, X. J. Zhao, N. Owens, L. C. Tan, D. R. Frear, M. Leoni, Y.-S. Lai and C.-L. Yeh, “Stress–Strain Characteristics of Tin-Based Solder Alloys for Drop-Impact Modeling,” Journal of Electronic Materials, Vol. 37, No. 6, pp. 829-836, 2008.

    下載圖示 校內:2014-08-21公開
    校外:2014-08-21公開
    QR CODE