簡易檢索 / 詳目顯示

研究生: 石國慶
Shih, Guo-Ching
論文名稱: 基於像素尺寸之二維影像快速及超大尺度放大與 縮小: 雙線性內插法與離散餘弦轉換之適應性組合
A Fast Pixel-Size-Based Very Large Scale Enlargement and Reduction of Image: An Adaptive Combination of Bilinear Interpolation and DCT
指導教授: 郭淑美
Guo, Shu-Mei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 49
中文關鍵詞: 離散餘弦轉換雙線性內插法基於像素大小放大縮小超大尺度放大進化規劃演算法放大
外文關鍵詞: discrete cosine transform, very large scale zooming, Enlargement, evolutionary programming., bilinear interpolation, reduction, pixel-size-based zooming
相關次數: 點閱:144下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個利用雙線性內插法與離散餘弦轉換之適應性組合以達到基於像素尺寸之二維影像快速及超大尺度放大/縮小,並且增進放大/縮小的速度與品質。利用雙線性內插法與離散餘弦轉換針對各區塊不同的特性,適應性地進行超大尺度的放大/縮小。與雙線性內插法作比較,離散餘弦轉換在邊界區塊上產生較佳品質的高階近似方法,但執行時間較長。然而,雙線性內插法是個在平滑區塊產生不錯品質的低階進似方法,並且只需較短時間執行。此外,如果品質為主要考量,進化規劃演算法被利用來調整縮小影像之頻率係數矩陣中的元素以進一步提升縮小的品質。最後,本論文也提出一個新的演算法以處理任意像素尺寸之放大/縮小。

    In this thesis, a fast pixel-size-based very large scale enlargement and reduction via an adaptive combination of bilinear interpolation and DCT of image is proposed to improve the quality and speed of the image zooming process. The proposed algorithm combined with discrete cosine transform (DCT) and bilinear interpolation is proposed to adaptive process different blocks of an image with different characteristics for a very large scale image enlargement and reduction. Compared with bilinear interpolation, DCT is a high-order approximation method that has high quality interpolation for sharp blocks but costs much operating time. Nevertheless, bilinear interpolation is a low-order approximation method with good quality for smooth blocks and costs few operating time. Moreover, if quality is the main concern factor, the evolutionary programming (EP) is applied to further improve the quality of reduction algorithm of an image by tuning the frequency coefficient matrix of the reduced image. Finally, for dealing with arbitrary pixel-size-based zooming of an image, a new algorithm is also proposed in this thesis.

    Abstract iv Table of Contents vi List of Tables viii List of Figures x Chapter 1 Introduction 1 Chapter 2 Background 5 2.1 Bilinear interpolation……………………………………………5 2.2 Discrete cosine function………………………………………...7 2.3 1-D signal enlargement via DCT………………………………..9 2.4 Blocky effect elimination………………………………………11 2.5 Ripple effect elimination……………………………………….13 2.6 2-D image enlargement via DCT………………………………14 Chapter 3 Novel adaptive DCT combined with bilinear interpolation for integer-multiple image scaling……………………………………………...16 3.1 Image enlargement via DCT combined with bilinear method…..16 3.2 Image reduction via DCT combined with bilinear method……...20 Chapter 4 Novel adaptive DCT combined with bilinear interpolation for pixel-size-based image zooming……………………………………….…..23 Chapter 5 Novel adaptive DCT combined with evolutionary programming for integer-mutiple image reduction…………………………………………...27 Chapter 6 Experimental result 33 Chapter 7 Conclusions 47 Reference 48

    [1] S. M. Guo, C. B. Li, C. W. Chen, Y. C. Liao, and S. H. Tsai, “Enlargement and reduction of image/video via discrete cosine transform pair, part 1: novel three-dimensional discrete cosine transform and enlargement,” Journal of Electron, Imaging, vol. 16, no. 4, 043006, pp. 1-19, 2007.
    [2] S. M. Guo, C. B. Li, C. W. Chen, Y. C. Liao, and S. H. Tsai, “Enlargement and reduction of image/video via discrete cosine transform pair, part 2: reduction,” Journal of Electron, Imaging, vol. 16, no. 4, 043007, pp. 1-9, 2007.
    [3] J. S. Lim, Two-Dimensional Signal and Image Processing, Upper Saddle River, NJ: Prentice Hall, 1990.
    [4] X. Li and M. Orchard, “New Edge-Directed Interpolation,” IEEE Transaction On Image Processing, vol. 10, no. 10,, pp. 1521-1527, 2001.
    [5] M. J. Chen, C. H. Huang, and W. L. Lee, “A fast edge-oriented algorithm for image interpolation,” Image and Vision Computing, vol.23, pp.791–798, 2005.
    [6] S. G. Chang, Z. Cvetkovic´ and M. Vetterli, “Locally adaptive wavelet-based image interpolation,” IEEE Transactions on Image Processing, vol. 15, no. 6, pp. 1471-1485, 2006.
    [7] W. Su and R. K. Ward, “An edge-based image interpolation approach using symmetric biorthogonal wavelet transform,” Multimedia Signal Processing, 2006 IEEE 8th Workshop, pp. 355 – 359, 2006.
    [8] X. Zhang and X. Wu, “Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation,” IEEE Transaction on image processing, Vol. 17, No. 6, Oct. 2008.
    [9] Z. Hou and W. Xu, “The Adjacent Diffusion Filter for Image Enlargement,” Communications and Information Technology, 2005. ISCIT 2005. IEEE International Symposium, vol. 1, pp. 507 – 510, 12-14 Oct. 2005.
    [10] Y. F. Hsu and Y. C. Chen, “Rational interpolation by extendible inverse discrete cosine transform,” Electronics Letters, vol. 33, no. 21, pp. 1774-1775, 1997.
    [11] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learnin, MA: Addison-Wesley, 1989.
    [12] K. F. Man, K. S. Tang and S. Kwang, Genetic Algorithms: Concepts and Design, London: Springer, 1999.
    [13] S. C. Kramer and R. C. Martin, “Direct optimization of gain scheduled trackers via genetic algorithms,” J. Guidance, Control, Dynamics, vol. 19 , pp. 636–642, 1996.
    [14] K. Krishnakumar and D. E. Goldberg, “Control system optimization using genetic algorithm,” J. Guidance, Control, Dynamics, vol. 15, pp. 735–740, 1992.
    [15] D. B. Fogel, Evolutionary Computation: The Fossil Record. Piscataway, NJ: IEEE Press, 1998.
    [16] J. K. Han and S. U. Baek, “Parametric cubic convolution scaler for enlargement and reduction of image,” IEEE Transaction on Consumer Electronics, vol. 46, no. 2, pp. 247-256, 2000.
    [17] E. Maeland, “On the comparison of interpolation methods,” IEEE Transaction on Medical Imaging, vol. 7, no. 3, pp. 213-217, 1988.
    [18] E. Meijering and M. Unser, “A note on cubic convolution interpolation,” IEEE Transaction on Image Processing, vol. 12, no. 4, pp. 477-479, 2003.

    下載圖示 校內:立即公開
    校外:2009-07-22公開
    QR CODE