簡易檢索 / 詳目顯示

研究生: 葉耀鮮
Yeh, Yao-Hsien
論文名稱: 結合詮釋資料與領域知識之地理資料搜尋與應用 ─以變遷偵測為例
Towards the Search and Application of Geospatial Information with the Integration of Standardized Metadata and Domain Knowledge – An Example of Change Detection Task
指導教授: 洪榮宏
Hong, Jung-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 205
中文關鍵詞: 變遷分析詮釋資料資料共享
外文關鍵詞: change detection, metadata, data sharing
相關次數: 點閱:156下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類對於地球資源的過度開發造成自然生態的急驟變化,使得我們的生活環境更為脆弱。環境變遷所造成的災害往往產生無法彌補的人力及財物損失,因此如何透過變遷分析(Change Detection)之手段,有效監控環境之變化,以促進人類與自然環境之永續發展,已成為產官各界所致力研究之課題。在全球意識高漲及空間資訊科技快速發展下,透過跨國及跨領域共享機制的建立,各領域研究人員將可在協同合作之運作方式下,對全球環境變化進行更有效之監控。然而,在共享機制逐漸成熟、空間資源大量累積、資源更易取得的環境下,分析者雖可享科技帶來之便,另一方面卻也勢必面對如何從「多元」與「巨量」資料的共享環境中找尋合適分析資料之挑戰。以變遷分析之觀點而言,分析者對於資料掌握的程度,更是決定分析成果是否正確之成敗因素。本研究結合「標準化詮釋資料」與「變遷分析知識」,提出一套創新之詮釋資料導向變遷偵測運作機制,針對變遷分析之「資料搜尋」部分,自動化產生基於變遷任務需求之資料搜尋條件,提升變遷資料搜尋上之精準度與效率。而在「變遷分析」部分,藉由引入變遷分析中所必要參考之資訊,並依據變遷分析任務之需求,設計資料風險評估之機制與品質感知之分析環境,提示分析者所採用資料可能帶有之風險,進而提升變遷偵測在決策分析上之正確性。
    本研究以三類變遷偵測類型為例(移位型、幾何型、數量型),分析各類型所需之條件及可供描述之標準化詮釋資料項目,並針對各類型之變遷分析需求設計資料搜尋之機制與品質感知之分析介面,成功驗證以標準化詮釋資料輔助領域應用需求之可行性。本研究提出標準化詮釋資料結合領域知識之概念,除能提升資料在變遷分析應用上之共享效益,亦可應用至其他領域。本研究除廣泛拓展詮釋資料之應用層面外,對於巨量資料與雲端技術(Cloud Computing)之應用以及未來智慧型決策系統之發展亦提供嶄新之觀點。

    The environmental changes caused by the overexploitation have resulted in the loss of economy and human life. To effectively monitor these changes for sustainable developments between human and the Nature has aroused a widespread attention. As the environmental awareness and the Geospatial Technology rises, the analysts from various fields monitor the global environmental changes more effectively through an international and interdisciplinary framework. Although the analysts take advantages of geo-resources from the sharing environment, it remains a challenge for an analyst to select “right” data in such a “Variety” and “Big Data” environment. It is essential that the analysts must have a complete understanding of the data for making correct decisions. This research proposes an innovative metadata-driven framework which integrates the “standardized metadata” and “knowledge of change detection” to assist the search and application of change detection tasks. According to the automatically generated searching constraints with the concerns of change detection knowledge, both the precision and efficiency of the data search can be promoted. Meanwhile, by designing a quality-aware mechanism based on the change detection knowledge, an informative analysis environment can be proposed to warn the analysts the risks so as to improve the correctness of the results.
    In this research, we select three types of change detection task: deformation, geometry change, and number change, to analyze the requirements of each task and provides the applicable metadata elements correspondingly. Besides, the intelligent searching mechanism and quality-aware analysis environment are developed for different kinds of the change detection tasks. This research successfully validates the feasibility of utilizing the standardized metadata in other applications. The concept of integrating standardized metadata with domain knowledge not only encourages the benefits of the change detection tasks sharing, but also can be applied in other specific applications. In addition to widen the application of the standardized metadata, the proposed framework provides a novel prospect toward the application of Cloud Computing, Big Data, and the intelligent Decision Support Systems for the future.

    摘要 I Abstract II ACKNOWLEDGMENT IV TABLE OF CONTENTS VI LIST OF TABLES IX LIST OF FIGURES XII 1. Introduction 1 §1.1 Background 1 §1.2 Major Strategy And Goals 4 §1.3 Research Architecture 7 2. Literature Review 11 §2.1 Change Detection Technology 11 §2.1.1 Fundamentals of Change Detection 11 §2.1.2 Data Issue in Change Detection 17 §2.2 Metadata 22 §2.2.1 The Development of Metadata 22 §2.2.2 International Metadata Standards 29 §2.3 Geoportal Development 34 3. Standardized Metadata for Change Detection 42 §3.1 Change Detection Scenario 42 §3.2 Change Detection Category 47 §3.2.1 Deformation Analysis 47 §3.2.2 Geometry Change 51 §3.2.3 Number Change 54 §3.3 Data Specification Requirements 58 §3.3.1 Common Specifications 58 §3.3.2 Vector Data 59 §3.3.3 Raster Data 60 §3.4 Core Metadata Items for Change Detection 64 §3.4.1 Data Time 64 §3.4.2 Spatial Extent 68 §3.4.3 Data Theme 71 §3.4.4 Data Specification 72 §3.4.5 Data Quality 74 §3.5 Required Metadata Elements for RS Images 79 §3.5.1 Resolution 79 §3.5.2 Environmental Conditions 82 §3.5.3 Correcting Information 83 §3.5.4 Platform 85 §3.6 Required Metadata Elements in Each Change Analysis 86 §3.6.1 Deformation 86 §3.6.2 Geometry Change 89 §3.6.3 Number Change 91 4. System Architecture Design 96 §4.1 General Architecture and Process Strategies 96 §4.1.1 System Architecture 97 §4.1.2 System Operations Workflow 100 §4.1.3 General Searching Strategies 103 §4.2 Design of the Searching Mechanism 109 §4.2.1 Temporal Searching Strategies 109 §4.2.2 Spatial Extent Searching Strategies 122 §4.2.3 Thematic Searching Strategies 124 §4.2.4 Searching Strategies for Deformation Analysis 125 §4.2.5 Searching Strategies for Geometry Change Detection Task 126 §4.2.6 Searching Strategies for Number Change Detection Task 130 §4.3 Design of Analysis Environment 132 §4.3.1 Deformation Type 133 §4.3.2 Geometric Change Type 134 §4.3.3 Number change type 135 §4.4 Design of Interactive Interface 137 §4.4.1 Design of Searching Interface 137 §4.4.2 Design of the Change Analysis Interface 140 5. System Implementation and Test 142 §5.1 System Development Environment 142 §5.2 Test data 144 §5.2.1 Extended Metadata Schema 144 §5.2.2 Collected Test Data 146 §5.3 System Overview 150 §5.3.1 General Operation Workflow 150 §5.3.2 Demonstration of Temporal Patterns Constraints 158 §5.4 Test and Analysis 164 §5.4.1 Geometry Change Type 164 §5.4.2 Number Change Type 175 6. Conclusion 183 7. Reference 187

    Aalders, H. J. G. L. (2005). An introduction to metadata for geographic information. In H. Moellering, H. Aalders & A. Crane (Eds.), World Spatial Metadata Standards: Elsevier Amsterdam.
    Agumya, A., & Hunter, G. J. (2002). Responding to the consequences of uncertainty in geographical data. International Journal of Geographical Information Science, 16(5), 405-417. doi: 10.1080/13658810210137031
    Alesheikh, A., Ghorbanali, A., & Nouri, N. (2007). Coastline change detection using remote sensing. International Journal of Environmental Science and Technology, 4(1), 61-66.
    Almutairi, A., & Warner, T. A. (2010). Change detection accuracy and image properties: A study using simulated data. Remote Sensing, 2(6), 1508-1529.
    ANZLIC. (2001). ANZLIC Metadata Guidelines: Core metadata elements for geographic data in Australia and New Zealand (version 2) Retrieved April 1st, 2013
    ANZLIC. (2007). ANZLIC Metadata Profile
    AODC. (2008). Marine Community Profile of ISO 19115
    Aronoff, S. (1989). Geographic Information Systems: A mangement perspective. Canada: WDL Publications.
    Aspinall, R. J., & Hill, M. J. (1997, 3-8 Aug 1997). Land cover change: a method for assessing the reliability of land cover changes measured from remotely-sensed data. Paper presented at the Geoscience and Remote Sensing, 1997. IGARSS '97. Remote Sensing - A Scientific Vision for Sustainable Development., 1997 IEEE International.
    Athanasis, N., Kalabokidis, K., Vaitis, M., & Soulakellis, N. (2009). Towards a semantics-based approach in the development of geographic portals. Computers & Geosciences, 35(2), 301-308. doi: http://dx.doi.org/10.1016/j.cageo.2008.01.014
    Batcheller, J. K. (2008). Automating geospatial metadata generation—An integrated data management and documentation approach. Computers & Geosciences, 34(4), 387-398. doi: http://dx.doi.org/10.1016/j.cageo.2007.04.001
    Blott, S., & Vckovski, A. (1995). Accessing Geographical Metafiles through a database storage system.
    Bretherton, F. P., & Singley, P. T. (1994, 28-30 Sep 1994). Metadata: a user's view. Paper presented at the Scientific and Statistical Database Management, 1994. Proceedings., Seventh International Working Conference on.
    Briggs, R. W., Sieh, K., Meltzner, A. J., Natawidjaja, D., Galetzka, J., Suwargadi, B., . . . Suprihanto, I. (2006). Deformation and slip along the Sunda megathrust in the great 2005 Nias-Simeulue earthquake. science, 311(5769), 1897-1901.
    Brink, A. B., & Eva, H. D. (2009). Monitoring 25 years of land cover change dynamics in Africa: A sample based remote sensing approach. Applied Geography, 29(4), 501-512.
    Bruce, T. R., & Hillmann, D. I. (2004). The continuum of metadata quality: defining, expressing, exploiting. In D. Hillmann & E. Westbrooks (Eds.), Metadata in Practice. Chicago, IL: ALA Editions.
    Cash, D. W. (2000). Distributed assessment systems: an emerging paradigm of research, assessment and decision-making for environmental change. Global Environmental Change, 10(4), 241-244.
    Caspary, W., & Rüeger, J. M. (1987). Concepts of network and deformation analysis: School of Surveying, University of New South Wales.
    Chengalur-Smith, I. N., Ballou, D. P., & Pazer, H. L. (1999). The impact of data quality information on decision making: an exploratory analysis. Knowledge and Data Engineering, IEEE Transactions on, 11(6), 853-864.
    Cifuentes, P., Malpica, J., & González-Matesanz, F. (2008). Change Detection with SPOT-5 and FORMOSAT-2 Imageries. Advances in Visual Computing, 1186-1195.
    Coleman, D. J., Georgiadou, Y., & Labonte, J. (2009). Volunteered geographic information: The nature and motivation of produsers. International Journal of Spatial Data Infrastructures Research, 4(1), 332-358.
    Crompvoets, J., Bregt, A., Rajabifard, A., & Williamson, I. (2004a). Assessing the worldwide developments of national spatial data clearinghouses. International Journal of Geographical Information Science, 18(7), 665-689. doi: 10.1080/13658810410001702030
    Crompvoets, J., Wachowicz, M., de Bree, F., & Bregt, A. (2004b). Impact assessment of the INSPIRE geo-portal. Paper presented at the Proc. of the 10th EC GI&GIS workshop.
    Dai, L., Zhang, J., Rizos, C., Han, S., & Wang, J. (2000). GPS and pseudolite integration for deformation monitoring applications. Paper presented at the ION GPS.
    Dai, X., & Khorram, S. (1998). The effects of image misregistration on the accuracy of remotely sensed change detection. Geoscience and Remote Sensing, IEEE Transactions on, 36(5), 1566-1577.
    Daratech, I. (2011, January 19th). GIS/Geospatial sales up 10.3% to US$4.4 billion Growth forecast to top 8.3% in 2011. Direction Magazine.
    Data.gov. (2013). Data.gov Retrieved May 1, 2013, from http://www.data.gov/about
    Data.gov.tw. (2013). Data.gov.tw Retrieved April 1, 2013, from http://data.gov.tw/
    Day, M. (2001). Metadata in a nutshell. Information Europe, 6(2), 11.
    DCMI. (2013a). Dublin Core Metadata Initiative Home Retrieved April 1st, 2013, from http://dublincore.org/
    DCMI. (2013b). Dublin Core Metadata Initiative Metadata Basic Retrieved April 1, 2013, from http://dublincore.org/metadata-basics/
    Debby, G.-S., Vos, F., Below, R., & Ponserre, S. (2012). Annual Disaster statistical review 2011. Centre for Research on the Epidemiology of Disasters.
    Dempsey, C. (2012, DECEMBER 4, 2012). Change Detection in GIS Retrieved April 1, 2013, from http://gislounge.com/change-detection-in-gis/
    Deren, L. (1997). On Definition, Theory and Key Technics of the Integration of GPS, RS and GIS [J]. Journal of Remote Sensing, 1(1), 64-68.
    Di, L. (2003, 21-25 July 2003). The development of remote-sensing related standards at FGDC, OGC, and ISO TC 211. Paper presented at the Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International.
    Di, L., Chen, A., Yang, W., & Zhao, P. (2003). The integration of grid technology with OGC Web Services (OWS) in NWGISS for NASA EOS data. GGF8 & HPDC12, 24-27.
    Di, L., Moe, K. L., & Yu, G. (2009). Metadata requirements analysis for the emerging Sensor Web This was orally presented at the European Geosciences Union General Assembly 2008, Vienna, Austria, 13–18 April 2008. International Journal of Digital Earth, 2(S1), 3-17.
    Dicovery. (2013). Top 10 Worst Effects of Global Warming Retrieved April 1, 2013, from http://dsc.discovery.com/tv-shows/curiosity/topics/worst-effects-global-warming.htm
    Dietze, L., Nonn, U., & Zipf, A. (2007). Metadata for 3D City Models Analysis of the Applicability of the ISO 19115 Standard and Possibilities for further Amendments.
    Donoghue, D. N. M. (2002). Remote sensing: environmental change. Progress in physical geography, 26(1), 144-152.
    Dorf, J., Scholten, H. J., & van de Velde, R. (1993). Meta-Catalog: a necessary requirement for european environmental research. EGIS'93 in Genoa, Italy, 636-643.
    Energeo. (2013). EnerGEO Geoportal Retrieved April 1st, 2013, from http://energeo.researchstudio.at/energeo/catalog/main/home.page
    EPSG. (2013a). EPSG Geodetic Parameter Dataset Retrieved April 1st, 2013, from http://www.epsg.org/geodetic.html
    EPSG. (2013b). EPSG Geodetic Parameter Registry Retrieved April 1, 2013, from http://www.epsg-registry.org/
    ESRI. (2002). Metadata and GIS - An ESRI® White Paper from http://www.esri.com/library/whitepapers/pdfs/metadata-and-gis.pdf
    ESRI. (2011). ArcGIS Resource Center - About validating metadata Retrieved April 1st, 2013, from http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//003t0000002n000000
    Fankhauser, S. (1994). The economic costs of global warming damage: A survey. Global Environmental Change, 4(4), 301-309.
    Fee, J. (2010). Let's save metadata Retrieved April 15, 2013, from http://spatiallyadjusted.com/2010/02/15/lets-save-metadata/
    FGDC. (2002a). GeoSpatial One-Stop Initiative Retrieved April 1, 2013, from http://www.fgdc.gov/participation/coordination-group/meeting-minutes/2002%20meeting%20minutes/september/geospatial
    FGDC. (2002b). Geospatial One Stop Best Practices White Paper Retrieved April 1, 2013, from http://www.fgdc.gov/participation/coordination-group/meeting-minutes/2002%20meeting%20minutes/may/5-01-02_reformat_ver11.pdf
    FGDC. (2005). Geospatial One-Stop Encouraging Partnerships to Enhance Access to Geospatial Information Retrieved April 1st, 2013, from http://www.fgdc.gov/library/factsheets/documents/gos.pdf
    FGDC. (2006). Ten most common metadata errors Retrieved April 1st, 2013, from http://www.fgdc.gov/metadata/documents/top10metadataerrors.pdf
    FGDC. (2007). North American Profile of ISO19115:2003 - Geographic information - Metadata.
    FGDC. (2012a). Geospatial Metadata Retrieved April 1st, 2013
    FGDC. (2012b). Geospatial Metadata Standards Retrieved April 1st, 2013
    FGDC. (2013). Geospatial Metadata Tools Retrieved April 19th, 2013, from http://www.fgdc.gov/metadata/geospatial-metadata-tools#availabletools
    Fleiss, J. L. (1981). Statistical methods for rates and proportions (2ed ed.). New York: Wiley.
    Foody, G. M. (2010). Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sensing of Environment, 114(10), 2271-2285.
    Frontiera, P., Larson, R., & Radke, J. (2008). A comparison of geometric approaches to assessing spatial similarity for GIR. International Journal of Geographical Information Science, 22(3), 337-360.
    Geographic, N. (2013). Effects of Global Warming Retrieved April 1, 2013, from http://environment.nationalgeographic.com/environment/global-warming/gw-effects/
    Giuliani, G., & Peduzzi, P. (2011). The PREVIEW Global Risk Data Platform: a geoportal to serve and share global data on risk to natural hazards. Natural Hazards and Earth System Sciences, 11(1), 53-66.
    GoGeo. (2010). GoGeo Retrieved April 1st, 2013, from http://www.gogeo.ac.uk/gogeo/index.htm
    Goodchild, M. F. (2007). Beyond metadata: Towards user-centric description of data quality. Paper presented at the Proceedings, Spatial Data Quality 2007 (International Symposium on Spatial Data Quality, June 13-15, at Enschede, Netherlands.
    Goodchild, M. F., Fu, P., & Rich, P. (2007). Sharing geographic information: an assessment of the Geospatial One-Stop. Annals of the Association of American Geographers, 97(2), 250-266.
    Gore, A. (1998). The digital earth: understanding our planet in the 21st century. Australian surveyor, 43(2), 89-91.
    Haynes, D. (2004). Metadata for information management and retrieval: Facet.
    Hazzard, E. (2011). Openlayers 2.10 beginner's guide: Packt Publishing Ltd.
    Hillmann, D. I. (2008). Metadata Quality: From Evaluation to Augmentation. Cataloging & Classification Quarterly, 46(1), 65-80. doi: 10.1080/01639370802183008
    Hong, J.-H., Huang, M.-L., & Yeh, Y.-H. (2012). Favorable Factor Analysis for Using Template to Improve the Creation of Disaster Reduction Metadata. Journal of the Taiwan Disaster Prevention Society, 4, 10.
    Hong, J.-H., & Liao, H.-P. (2009, 25-27 Aug. 2009). Interoperable Map Interface towards the Sharing and Integration of Internet Geospatial Resource: A Metadata Perspective. Paper presented at the INC, IMS and IDC, 2009. NCM '09. Fifth International Joint Conference on.
    Hutchison, V. (2010). Spatial Data Management Through Metadata: Global Concepts, Formats, Tools and Requirements. In S. Cushman & F. Huettmann (Eds.), Spatial Complexity, Informatics, and Wildlife Conservation (pp. 223-231): Springer Japan.
    Iannella, R., & Waugh, A. (1997). Metadata: enabling the Internet: DSTC Pty Limited.
    INSPIRE. (2010). INSPIRE Metadata Implementing Rules: Technical Guidelines based on EN ISO 19115 and EN ISO 19119.
    INSPIRE. (2012). INSPIRE Geoportal Retrieved April 1st, 2013, from http://inspire-geoportal.ec.europa.eu/
    INSPIRE. (2013). INSPIRE Geoportal Metadata Validator Retrieved April 1st, 2013, from http://inspire-geoportal.ec.europa.eu/validator2/
    IPCC. (2013). Intergovernmental Panel on Climate Change Retrieved April 1, 2013, from http://www.ipcc.ch/
    ISO. (2002a). 19108: Geographic information - Temporal schema. Geneva: ISO.
    ISO. (2002b). ISO19113: Geographic information - Quality principles. Geneva: ISO.
    ISO. (2003a). ISO19114: Geographic information - Quality evaluation. Geneva: ISO.
    ISO. (2003b). ISO 19115: Geographic Information - Metadata. Geneva: ISO.
    ISO. (2006). ISO 19115: Geographic information — Metadata TECHNICAL CORRIGENDUM 1. Geneva: ISO.
    ISO. (2007). ISO 19139: Geographic information — Metadata —XML schema implementation ISO 19139. Geneva: ISO.
    ISO. (2013). ISO/DIS 19115-1Geographic information -- Metadata -- Part 1: Fundamentals Retrieved April 1st, 2013, from http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=53798
    ISO/TS. (2006). ISO19138: Geographic information - Data quality measures. Switzerland: ISO/TS.
    Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective. Upper Saddle River, New Jersey: Prentice-Hall Inc.
    Jensen, J. R., & Lulla, D. K. (1987). Introductory digital image processing: a remote sensing perspective Introductory digital image processing: a remote sensing perspective.
    Jianya, G., Haigang, S., Guorui, M., & Qiming, Z. (2008). A review of multi-temporal remote sensing data change detection algorithms. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B7), 757-762.
    Karabegovic, A., & Ponjavic, M. (2012, 9-12 Sept. 2012). Geoportal as decision support system with spatial data warehouse. Paper presented at the Computer Science and Information Systems (FedCSIS), 2012 Federated Conference on.
    Kemper, G., Celikoyan, M., Altan, O., Toz, G., Lavalle, C., & Demicelli, L. (2004). RS-techniques for Land use change detection–Case study of Istanbul. XX. Uluslararası Fotogrametri ve Uzaktan Algılama Birliği Kongresi, 12-23.
    Khorram, S., Biging, G., Chrisman, N. R., Colby, D. R., Congalton, R. G., Dobson, J. E., . . . Mace, T. H. (1999). Accuracy assessment of remote sensing-derived change detection.
    Killpack, C. (2011). BIG DATA, Bigger opportunity, April 1, from http://geospatialworld.net/Paper/Cover-Stories/ArticleView.aspx?aid=22105
    Lake, R. (2005). The application of geography markup language (GML) to the geological sciences. Computers & Geosciences, 31(9), 1081-1094. doi: http://dx.doi.org/10.1016/j.cageo.2004.12.005
    Li, W., Yang, C., & Yang, C. (2010a). An active crawler for discovering geospatial Web services and their distribution pattern – A case study of OGC Web Map Service. International Journal of Geographical Information Science, 24(8), 1127-1147. doi: 10.1080/13658810903514172
    Li, X., & Damen, M. C. J. (2010b). Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. Journal of Marine Systems, 82, S54-S61.
    Lin, H., Yu, B., Chen, Z., Hu, Y., Huang, Y., Wu, J., . . . Ge, R. (2013). A geospatial web portal for sharing and analyzing greenhouse gas data derived from satellite remote sensing images. Frontiers of Earth Science, 1-15. doi: 10.1007/s11707-013-0365-z
    Liu, C., Frazier, P., & Kumar, L. (2007). Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment, 107(4), 606-616.
    Lowell, K. (2001). An area-based accuracy assessment methodology for digital change maps. International journal of remote sensing, 22(17), 3571-3596. doi: 10.1080/01431160010031270
    Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International journal of remote sensing, 25(12), 2365-2401.
    Lunetta, R. S., Congalton, R. G., Fenstermaker, L. K., Jensen, J. R., McGwire, K. С., & Tinney, L. R. (1991). Remote Sensing and Geographic Information System Data Integration: Error Sources and Research Issues. Photogrammetric Engineering & Remote Sensing, 57(6), 677-687.
    Lunetta, R. S., & Elvidge, C. D. (1999). Remote sensing change detection: environmental monitoring methods and applications: Taylor & Francis Ltd.
    Lynch, C. (2008). Big data: How do your data grow? Nature, 455(7209), 28-29.
    Maguire, D. J., & Longley, P. A. (2005). The emergence of geoportals and their role in spatial data infrastructures. Computers, Environment and Urban Systems, 29(1), 3-14. doi: http://dx.doi.org/10.1016/j.compenvurbsys.2004.05.012
    Mas, J. F. (1999). Monitoring land-cover changes: a comparison of change detection techniques. International journal of remote sensing, 20(1), 139-152.
    MCDC. (2008). 2008 ACS Geographic Summaries Retrieved April 1, 2013, from http://mcdc.missouri.edu/allabout/sumlevs/xtract.html
    Moreno, M., Klotz, J., Melnick, D., Echtler, H., & Bataille, K. (2008). Active faulting and heterogeneous deformation across a megathrust segment boundary from GPS data, south central Chile (36–39 S). Geochem. Geophys. Geosyst, 9, Q12024.
    Morisette, J. T., & Khorram, S. (2000). Accuracy assessment curves for satellite-based change detection. PE & RS- Photogrammetric Engineering & Remote Sensing, 66(7), 875-880.
    Murray-Moraleda, J. (2011). GPS: Applications in Crustal Deformation Monitoring. In R. A. Meyers (Ed.), Extreme Environmental Events (pp. 589-622): Springer New York.
    NASA. (2013a). Global Change Master Directory Discover Earth science data and services Retrieved April 1st, 2013, from http://gcmd.nasa.gov/learn/index.html
    NASA. (2013b). Global Climate Change Retrieved April 1, 2013, from http://climate.nasa.gov/
    NASA. (2013c). Global Climate Change - Evidence Retrieved April 1, 2013, from http://climate.nasa.gov/evidence/
    Nebert, D. (2004). The SDI cookbook. Global Spatial Data Infrastructure. Internet: http://www. gsdi. org/pubs/cookbook/recetario_es0515. pdf.
    NISO. (2004). Understanding Metadata. Retrieved from http://www.niso.org/publications/press/UnderstandingMetadata.pdf
    NOAA. (2013). NOAA Satellite and Information Service Retrieved April 1st, 2013, from http://www.nesdis.noaa.gov/about_nesdis.html
    Nogueras-Iso, J., Zarazaga-Soria, F. J., Lacasta, J., Béjar, R., & Muro-Medrano, P. R. (2004). Metadata standard interoperability: application in the geographic information domain. Computers, Environment and Urban Systems, 28(6), 611-634. doi: http://dx.doi.org/10.1016/j.compenvurbsys.2003.12.004
    O’reilly, T. (2005). What is web 2.0 Retrieved April 1st, 2013, from http://www.ttivanguard.com/ttivanguard_cfmfiles/pdf/dc05/dc05session4003.pdf
    OGC. (2002). OGC Seeks Quotations/Participation in the Geospatial One-Stop Portal Initiative Retrieved April 1st, 2013, from http://www.opengeospatial.org/pressroom/pressreleases/336
    Geospatial Portal Reference Architecture (2004).
    OGC. (2005). Implementation Specification for Geographic information - Simple feature access - Part 1:Common architecture.
    Olfat, H., Kalantari, M., Rajabifard, A., Senot, H., & Williamson, I. P. (2012a). A GML-based approach to automate spatial metadata updating. International Journal of Geographical Information Science, 27(2), 231-250. doi: 10.1080/13658816.2012.678853
    Olfat, H., Kalantari, M., Rajabifard, A., & Williamson, I. P. (2012b). Towards a foundation for spatial metadata automation. Journal of Spatial Science, 57(1), 65-81.
    Olofsson, P., Foody, G. M., Stehman, S. V., & Woodcock, C. E. (2013). Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129(0), 122-131. doi: http://dx.doi.org/10.1016/j.rse.2012.10.031
    Østensena, O., & Dankob, D. M. (2005). Global Spatial Metadata Activities in the ISO/TC211 Geographic Information Domain. In H. Moellering, H. Aalders & A. Crane (Eds.), World spatial metadata standards: Elsevier Amsterdam.
    Poore, B., & Wolf, E. (2013). Metadata Squared: Enhancing Its Usability for Volunteered Geographic Information and the GeoWeb. In D. Sui, S. Elwood & M. Goodchild (Eds.), Crowdsourcing Geographic Knowledge (pp. 43-64): Springer Netherlands.
    Rajabifard, A., Kalantari, M., & Binns, A. (2009). SDI and metadata entry and updating tools. SDI convergence, 121.
    Rogan, J., & Chen, D. M. (2004). Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in Planning, 61(4), 301-325.
    Sagiya, T., Miyazaki, S., & Tada, T. (2000). Continuous GPS array and present-day crustal deformation of Japan. Pure and applied Geophysics, 157(11/12), 2303-2322.
    Samal, A., Bhatia, S., Vadlamani, P., & Marx, D. (2009). Searching satellite imagery with integrated measures. Pattern Recognition, 42(11), 2502-2513. doi: http://dx.doi.org/10.1016/j.patcog.2009.01.035
    Satellite Imaging Corporation. (2013). Satellite Imaging Corporation, from http://www.satimagingcorp.com/characterization-of-satellite-remote-sensing-systems.html
    Sboui, T., Salehi, M., & Bédard, Y. (2009). Towards a Quantitative Evaluation of Geospatial Metadata Quality in the Context of Semantic Interoperability. proceedings of ISSDQ.
    Scott, M. (2001). A Comparison between snapshot and composite change data, from http://www.markscott.biz/papers/portland/chapter2.htm
    Segall, P., & Davis, J. L. (1997). GPS APPLICATIONS FOR GEODYNAMICS AND EARTHQUAKE STUDIES. Annual Review of Earth and Planetary Sciences, 25(1), 301-336. doi: doi:10.1146/annurev.earth.25.1.301
    Serra, P., Pons, X., & Sauri, D. (2003). Post-classification change detection with data from different sensors: some accuracy considerations. International journal of remote sensing, 24(16), 3311-3340.
    Seto, K. C., Woodcock, C., Song, C., Huang, X., Lu, J., & Kaufmann, R. (2002). Monitoring land-use change in the Pearl River Delta using Landsat TM. International journal of remote sensing, 23(10), 1985-2004.
    Singh, A. (1989). Review Article Digital change detection techniques using remotely-sensed data. International journal of remote sensing, 10(6), 989-1003.
    Srinivas, J., Kumar, K. K., Babu, B. S., & BABU, G. C. (2011). Geoportal-A Spatial Cloud Information Service. International Journal of Engineering Science, 3.
    Steiniger, S., & Hunter, A. J. (2012). Free and open source GIS software for building a spatial data infrastructure Geospatial Free and Open Source Software in the 21st Century (pp. 247-261): Springer.
    Tait, M. G. (2005). Implementing geoportals: applications of distributed GIS. Computers, Environment and Urban Systems, 29(1), 33-47. doi: http://dx.doi.org/10.1016/j.compenvurbsys.2004.05.011
    Tang, W., & Selwood, J. (2005). Spatial Portals: gateways to geographic information: Esri Press Redlands.
    Tao, B. Z. (1984). 自由網平差與變形分析. Beijing: 測繪出版社.
    TGOS. (2012). TGOS Retrieved May 1st, 2013, from http://tgos.nat.gov.tw/tgos/Web/TGOS_Home.aspx
    Timpf, S., Raubal, M., & Kuhn, W. (1997). Experiences with metadata: Technical University of Vienna, Department for Geoinformation.
    Tol, R. S. J. (2002). Estimates of the damage costs of climate change. Part 1: Benchmark estimates. Environmental and Resource Economics, 21(1), 47-73.
    Tsou, M. H. (2002). An operational metadata framework for searching, indexing, and retrieving distributed geographic information services on the Internet. Geographic Information Science, 313-332.
    Tucci, M., & Giordano, A. (2011). Positional accuracy, positional uncertainty, and feature change detection in historical maps: Results of an experiment. Computers, Environment and Urban Systems, 35(6), 452-463. doi: http://dx.doi.org/10.1016/j.compenvurbsys.2011.05.004
    Turker, M., & Derenyi, E. (2000). GIS assisted change detection using remote sensing. Geocarto International, 15(1), 51-56.
    United Nations. (1998). Kyoto Protocol to the United Nations Framework Convention on Climate Change In U. NATIONS (Ed.).
    United Nations. (2013). United Nations - Framework Convention on Climate Change Retrieved April 1, 2013, from http://unfccc.int/2860.php
    USA.gov. (2013). Open Government Initiative - Data.gov Retrieved May 1, 2013, from http://www.whitehouse.gov/open/innovations/Data/
    Vockner, B., Richter, A., & Mittlböck, M. (2013). From Geoportals to Geographic Knowledge Portals. ISPRS International Journal of Geo-Information, 2(2), 256-275.
    Wang, Q., Zhang, P. Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X., . . . Li, Y. (2001). Present-day crustal deformation in China constrained by global positioning system measurements. science, 294(5542), 574-577.
    Wang, X.-W., Wang, Z.-T., Zhen, K.-S., & Lin, Y.-L. (2007). 利用衛星雷達影像分析臺灣西部水線變遷. Journal of Photogrammetry and Remote Sensing, 12(2), 107-119.
    Weng, Q. (2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of Environmental Management, 64(3), 273-284.
    WHO. (2013). Climate change and human health Retrieved May 1, 2103, from http://who.int/globalchange/en/
    WikiPedia. (2013a). Degrees of freedom (statistics) Retrieved April 1, 2013, from http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
    Wikipedia. (2013b). Global warming Retrieved April 1, 2013, from http://en.wikipedia.org/wiki/Global_warming
    Worboys, M., & Ducjham, M. (2004). GIS A Computing Perspective: CRC PRESS.
    Xie, R., Shibasaki, R., & Ono, M. (2007). Metadata Development for the Integration of CEOP Satellite-Observation Data. JOURNAL- METEOROLOGICAL SOCIETY OF JAPAN SERIES 2, VOL 85 ; PART A; SPI(Coordinated Enhanced Observing Period(CEOP)), 487-517.
    Yang, H., & Feng, G. (2012). Automatic Creation of Crosswalk for Geospatial Metadata Standard Interoperability. In N. Xiao, M.-P. Kwan, M. Goodchild & S. Shekhar (Eds.), Geographic Information Science (Vol. 7478, pp. 311-324): Springer Berlin Heidelberg.
    Yang, P., Evans, J., Cole, M., Alameh, N., Marley, S., & Bambacus, M. (2007). The emerging concepts and applications of the spatial web portal. Photogrammetric engineering and remote sensing, 73(6), 691.
    Yu, S.-B., Hsu, Y.-J., Kuo, L.-C., Chen, H.-Y., & Liu, C.-C. (2003). GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake. J. Geophys. Res., 108(B11), 2520. doi: 10.1029/2003jb002396
    Yu, S.-B., Kuo, L.-C., Hsu, Y.-J., Su, H.-H., Liu, C.-C., Hou, C.-S., . . . Shin, T.-C. (2001). Preseismic Deformation and Coseismic Displacements Associated with the 1999 Chi-Chi, Taiwan, Earthquake. Bulletin of the Seismological Society of America, 91(5), 995-1012. doi: 10.1785/0120000722
    Yue, P., Gong, J., & Di, L. (2010). Augmenting geospatial data provenance through metadata tracking in geospatial service chaining. Computers & Geosciences, 36(3), 270-281. doi: http://dx.doi.org/10.1016/j.cageo.2009.09.002
    Zăvoianu, F., Caramizoiub, A., & Badeaa, D. (n.d.). Study and accuracy assessment of remote sensing data for environment change detection in Romanian coastal zone of the Black Sea Retrieved April 1, 2013, from http://www.isprs.org/proceedings/xxxv/congress/comm7/papers/153.pdf
    Zhang, T., Clarke, K. C., & Guan, Q. (2006). The GIS Web Portal: Beyond Data Services. Paper presented at the AutoCarto 2006 Research Symposium in Vancouver.
    Zubair, A. O. (2006). Change detection In land use and land cover using remote sensing data and GIS. Unpublished master thesis, University of Ibadan.

    下載圖示 校內:2016-09-04公開
    校外:2016-09-04公開
    QR CODE