簡易檢索 / 詳目顯示

研究生: 陳曄
Chen, Yeh
論文名稱: 利用衰減式全反射方式探討二氧化釩表面與氧氣反應機制
Study the reaction between vanadium dioxide surface and oxygen gas by using attenuated total reflection
指導教授: 羅光耀
Lo, Kuang-Yao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 52
中文關鍵詞: 二氧化釩金屬-半導體相變衰減性全反射介電常數
外文關鍵詞: vanadium dioxide, dielectric constant, attenuated total reflection
相關次數: 點閱:111下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著環保意識抬頭,研究能具有溫控功能的節能玻璃開始受到重視,而二氧化釩因其具有優異的熱致變色特性,具有良好的應用前景。二氧化釩能夠在溫度上升時產生相變,從原先的單斜晶體轉變成四方晶體,同時由半導體態轉變成金屬態,在金屬態的介電常數虛部項會快速增加,並大幅提高二氧化釩在紅外線區段的反射率,將紅外線阻隔在玻璃窗外,以降低室內溫度達到節能的效果。而瞭解二氧化釩表面的特性對未來智慧窗戶或其他關於熱致變色的應用會有相當大的幫助。此研究透過衰減性全反射技術以一種非破壞性且能有效探測材料介面方法,偵測有無增加鉻層時,成長在金膜上的二氧化釩薄膜有無不同,並觀察二氧化釩表面在經過加熱、通入氣體的過程,其表面光學性質的變化。衰減性全反射技術透過結合光學中的衰減波以及表面電漿現象,令雷射光在特定條件、角度下於介面上激發非輻射性表面電漿共振,並藉由分析其光學圖譜,可得知多層結構各自的介電常數。對於材料介面的光學性質變化相當靈敏。

    With the awareness of environmental protection, research on energy-efficient coatings on glass which can regulate temperature is getting more attention. Vanadium dioxide has attracted a great interest for smart window applications because of its promising thermochromic properties. The metal-insulator transition in vanadium dioxide occurs at a conveniently accessible temperature. When above Tc, the monoclinic structure would transform into rutile-like structure. Meanwhile, the transition from the semiconductor to the metallic state causes the imaginary part of dielectric constant substantially to increase. The reflectance in infrared range also rapidly increases, and switching off the infrared outside the window. Regulating the temperature in the building. To the application of smart window or other related thermochromic region, it is helpful to understand the properties of vanadium dioxide surface. In this work, attenuated total reflection(ATR) provides a non-destroyed and effective way to probe the interface of materials. By analyzing the ATR pattern we could obtain each dielectric constant in multilayer. We observing with and without chromium layer, the differentiation of vanadium dioxide deposited on the gold film. Furthermore, in the process of heating and inserting oxygen measures the variation of optical properties on the vanadium dioxide surface.

    第一章 緒論 1 第二章 二氧化釩(Vanadium dioxide,VO2) 及氧化還原 3 2.1二氧化釩(VO2) 3 2.1.1二氧化釩(VO2)的特性 3 2.1.2 二氧化釩的晶體缺陷 5 2.1.3 二氧化釩的表面結構 6 2.1.4 二氧化釩(110)表面與氧化還原反應機制 8 第三章 相關理論 13 3.1 衰減式全反射(ATR)及表面電漿共振(SPR) 13 3.1.1 衰減式全反射(ATR)實驗原理 13 3.1.2 Winspall軟體 19 3.2 脈衝雷射沉積(Pulse Laser Deposition,PLD) 21 3.3 熱蒸鍍法 22 3.4 電子束蒸鍍法 23 第四章 實驗方法與分析系統 25 4.1實驗流程 25 4.2樣本製備 26 4.3衰減式全反射實驗方法及架設 27 4.3.1 ATR實驗方法 27 4.3.2 ATR光學量測系統 28 4.3.3 積分系統 29 4.3.4 擬合數據 29 第五章 實驗結果與討論 30 5.1 二氧化釩表面結構 30 5.2 無鉻黏著層的T-VO2/Au進行加熱 30 5.3 有鉻黏著層的T-VO2/Au/Cr加熱結果 35 5.4 E-VO2/Au/Cr加熱及通入Ar、O2,二氧化釩表面的變化 36 5.4.1 VO2/Au/Cr薄膜擬合結果 36 5.4.2 VO2/Au/Cr薄膜加熱前後結果 39 5.4.3 VO2/Au/Cr薄膜 通入氬氣結果 39 5.4.4 VO2/Au/Cr薄膜 通入氧氣結果 43 第六章 結論 50 參考文獻 51

    [ 1] F.J. Morin, Phys. Rev. Lett. 3 (1959) 34.
    [ 2] YanFeng Gao, Hongjie Luo, Zongtao Zhang, Litao Kang, Zhang Chen, Jing Du, Minoru Kanehira, and Chuanxiang Cao, Nano Energy, 1, 221-246 (2012)
    [ 3] Shufen Wang, Minsu Liu, Lingbing Kong, Yi Long, Xuchuan Jiang, and Aibing Yu, Progress in Materials Science, 81, 1-54 (2016).
    [ 4] R. W. Wood, Philos. Mag. 4, 396 (1902).
    [ 5] Otto, A. Z. Physik (1968) 216: 398.
    [ 6] H.W. Verleur, A.S. Barker, Jr., and C.N. Berglund, Phys. Rev. 172, 788
    [ 7] Yuanyuan Cui, Bin Liu, Lanli Chen, Hongjie Luo, and Yanfeng Gao, American Institute of Physics, 6, 10 (2016).
    [ 8] Thomas A. Mellan and Ricardo Grau-Crespoa, J. Chem. Phys. 137, 154706 (2012).
    [ 9] Jlhua Guo, Zhaoming Zhu, and Welmin Deng, Applied Optics, 38, 31
    [ 10] Hendro, Hidayat, R., and Kurnia, D, J.Oto.Ktrl.Inst, 3, 2 (2011).
    [ 11] Shaojuan Fan, Lele Fan, Qiang Li, Jiandang Liu, and Bangjiao Ye, Applied Surface Science, 321, 464-468 (2014).
    [ 12] Harsha Reddy, Urcan Guler, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev, Optical Material, 6, 9 (2016).
    [ 13] P. H. Holloway, Gold Bull, 12, 3, 99-106 (1979).
    [ 14] P. B. Johnson, and R. W. Christy, Phys. Rev. B, 9, 5056 (1974).
    [ 15] P. B. Johnson and R. W. Christy, Phys. Rev. B., 6, 4370 (1972).
    [ 16] I. Balberg and S. Trokman, Journal of Applied Physics 46, 2111 (1975).
    [ 17] Kuo-Ping Chen, Vladimir P. Drachev, Joshua D. Borneman, Alexander V. Kildishev, and Vladimir M. Shalaev, Nano Lett., 10, 916–922 (2010).
    [ 18] H.K. Kim, S.L. Ao, M.A. Amouzegar, and B.B. Rieger, Drude-Lorentz Model of Semiconductor Optical Plasmons, Springer, P41-48, 2012
    [ 19] Geert Silversmit, Diederik Depla, Hilde Poelman, Guy B. Marin, and Roger De Gryse, Journal of Electron Spectroscopy and Related Phenomena, 135, 167–175 (2004).
    [ 20] M. Demetera, M. Neumanna, W. Reichelt, Surface Science, 454–456, 41–44 (2000).
    [ 21] J. Kasperkiewicz, J.A. Kovacich, and D. Lichtman, Journal of Electron Spectroscopy and Related Phenomena, 32, 123-132 (1983).

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE