簡易檢索 / 詳目顯示

研究生: 黃振瑋
Huang, Chen-Wei
論文名稱: 以表面增顯紅外吸收光譜儀探討烷基胺分子在金電極表面上之自組裝行為及其單分子膜電化學特性
The Study of Self-Assembled Monolayers (SAMs) and electrochemical characteristic of Alkylamines on gold surface by Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS)
指導教授: 李玉郎
Lee, Yuh-Lang
共同指導教授: 吳昭燕
Wu, Chao-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 103
中文關鍵詞: 烷基胺分子自組裝分子膜表面增顯紅外光譜儀
外文關鍵詞: Alkyl amine, Self-assembled monolayer, Surface-Enhanced Infrared Spectroscopy
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用表面增顯紅外光譜儀(SEIRAS)及循環伏安儀(CV)來探討烷基胺分子在黃金表面上的即時(in-situ)自組裝行為,主要探討溶液的酸鹼性(酸性及中性)、表面電位、以及烷基胺分子(R-NH2)的碳鏈長度對於烷基胺在金表面上的吸附行為及其吸附薄膜特性的影響。
    實驗結果發現,於酸性溶液(HClO4)中,胺分子會質子化為R-NH3+,在溶液中有良好的溶解度。此質子化的R-NH3+在開路電位或負電位下,都無法與金表面進行化學吸附。但若將電極電位先控制在負偏壓(-0.9V),再緩慢的調升電位,在電位升至0.2V時,可觀察到碳氮鍵(-CN)的吸收峰,表示質子化的烷胺分子與金表面進行化學吸附,轉化為烷基胺分子(R-NH2)。此轉化過程約需30至40分鐘,但此一鍵結形成後,就很穩定,即使將電極電位再調回負偏壓,亦可穩定存在。不同鏈長的胺分子都有類似的吸附行為。
    於中性系統中,胺分子會以質子化(R-NH3+)及非質子化(R-NH2)的形式存在,其吸附行為會受到碳鏈長度及表面電位的影響。在開路電位下,六碳胺及十二碳胺分子皆可在金表面上進行吸附,主要是非質子化(R-NH2)與表面的反應。但在正、負偏壓下,兩者有不同之表現。對六碳胺而言,非質子化分子(R-NH2)的濃度高,是控制表面反應的主要成份,因此,胺分子的吸附量會隨電位增加而變大。相反的,因十二胺(C12-NH2)在中性溶液中的溶解度低,十二碳胺系統的吸附行為主要受質子化的C12-NH3+分子所控制。不論是在負或正偏壓下,C12-NH3+分子都會在表面進行物理性吸附,形成一結構障礙層,阻撓C12-NH2分子與表面的反應。胺分子在中性溶液下改變電位的吸附行為,與其在酸性系統中的結果類似。R-NH3+會在負偏壓下先吸附於表面,隨著電位調升,R-NH3+會與表面進行化學鍵結。

    A surface-enhanced infrared spectroscopy (SEIRAS) and cyclic voltammetry (CV) are utilized to in-situ study the self-assembly behavior of alkyl amine molecules on gold surface. It is mainly discussed about effects of the situations under acidic and neutral system, applying potential and chain length.
    In acid solution (HClO4), alkyl amine molecules will be protonated to R-NH3+ and well dissolve in it. The protonated R-NH3+ can not adsorb on gold surface under OCP or negative potential. We can observe the carbon nitrogen bonds (-CN) appear when the surface potential shifts from negative site (-0.9V) to more positive site (0.2V), which indicates that the R-NH3+ molecule will transfer to R-NH2 and adsorb on gold surface by chemical bond. It needs 30 to 40 minutes to complete the transfer process. Once the R-NH2 adsorption structure is formed, it still stably remains even if shifting the potential back to negative site. Alkyl amines with different chain lengths show similar behaviors.
    In neutral system (KClO4), the R-NH3+ and R-NH2 molecule co-exist in the solution. Its adsorption behavior is influenced by different chain lengths and surface potential. Hexylamine and dodecylamine can adsorb on gold surface under OCP because of the reaction between R-NH2 and surface. However, they have different adsorption behaviors when applying bias. To hexylamine, higher proportion of R-NH2 is the main factor to affect the surface reaction, and its adsorption amount increases with positive potential. As for dodecylamine, it has poorer solubility in neutral solution, and R-NH3+ is the main factor to control its adsorption behavior. C12-NH3+ will form a physical adsorption layer on the surface first which hinders C12-NH2 from reacting with substrate. The alkyl amine’s shifting potential result is similar to it in acid system. R-NH3+ will come close to the surface under negative potential, and adsorb on surface with the increasing of potential.

    摘要 I Abstract III Extend Abstract V 目錄 XVII 圖目錄 XIX 表目錄 XXVI 第一章 緒論 1 1.1前言 1 1.2研究動機 3 第二章 文獻回顧 6 2.1 自組裝單分子膜(self-assembled monolayers, SAMs) 6 2.1.1 自組裝單分子膜系統的發展及起源 6 2.1.2 自組裝單分子膜系統的分類 7 2.1.3 自組裝現象及分子之特性 10 2.1.4 自組裝單分子膜的應用 11 2.2 烷基胺分子(alkylamine molecule)之介紹 13 2.2.1 烷基胺分子於介面科學之應用 13 2.2.2 烷基胺分子自組裝分子之吸附現象 16 2.2.3 烷基胺分子自組裝分子膜特性之研究 18 第三章 實驗部分 29 3.1 藥品及耗材 29 3.2 儀器設備 31 3.2.1循環伏安儀 (Cyclic Voltammogram, CV) 31 3.2.2 表面增顯紅外光譜儀 (Surface-Enhanced Infrared Absorption Spectroscopy, SEIRAS) 34 3.2.3 超純水系統(Milli-Q ultrapure water purification system) 40 3.2.4 pH計 (pH meter) 41 3.3 實驗步驟 42 3.3.1 表面增強紅外光譜儀電極製備 42 3.3.2 表面增強紅外光譜儀之操作 43 第四章 結果與討論 45 4.1 烷基胺分子於多晶金及酸性溶液中之分析 45 4.1.1 多晶金電極於酸性溶液中之循環伏安圖 45 4.1.2 烷基胺分子於多晶金表面之循環伏安圖 47 4.1.3 烷基胺分子於金表面之吸附判斷 49 4.1.4 於多晶金表面上自組裝烷基胺分子膜 52 4.1.4.1 六碳鏈烷基胺分子於金表面之表面增顯紅外光譜 52 4.1.4.2 十二碳鏈烷基胺分子於金表面之表面增顯紅外光譜 56 4.1.4.3 十八碳鏈烷基胺分子於金表面之表面增顯紅外光譜 61 4.1.4.4 定電位下烷基胺分子鏈長對自組裝分子膜之特性影響 64 4.1.4.5 變電位下烷基胺分子鏈長對自組裝分子膜之特性影響 69 4.2 烷基胺分子於多晶金及中性溶液中之分析 77 4.2.1 烷基胺分子於多晶金表面之循環伏安圖 79 4.2.2 六碳鏈烷基胺分子於金表面之表面增顯紅外光譜 81 4.2.3 十二碳鏈烷基胺分子於金表面之表面增顯紅外光譜 86 4.2.4 定電位下烷基胺分子鏈長對自組裝分子膜之特性影響 92 4.2.5 變電位下烷基胺分子鏈長對自組裝分子膜之特性影響 94 第五章 結論 97 第六章 參考資料 100

    [1] D. L. P. W.C.Bigelow, W.A., "Oleophobic Monolayers:1. films adsorbed from solution in non polar liquids," J.Colloid Sci., vol. 1, p. 513, 1946.
    [2] A. U. H.Kuhn, "Thin films," Academic Press,New York, 1995.
    [3] R. G. Nuzzo and D. L. Allara, "ADSORPTION OF BIFUNCTIONAL ORGANIC DISULFIDES ON GOLD SURFACES," Journal of the American Chemical Society, vol. 105, pp. 4481-4483, 1983 1983.
    [4] G. H. Yang and G. Y. Liu, "New insights for self-assembled monolayers of organothiols on Au(111) revealed by scanning tunneling microscopy," Journal of Physical Chemistry B, vol. 107, pp. 8746-8759, Aug 28 2003.
    [5] H. A. Biebuyck and G. M. Whitesides, "INTERCHANGE BETWEEN MONOLAYERS ON GOLD FORMED FROM UNSYMMETRICAL DISULFIDES AND SOLUTIONS OF THIOLS - EVIDENCE FOR SULFUR SULFUR BOND-CLEAVAGE BY GOLD METAL," Langmuir, vol. 9, pp. 1766-1770, Jul 1993.
    [6] H. A. Biebuyck, C. D. Bian, and G. M. Whitesides, "COMPARISON OF ORGANIC MONOLAYERS ON POLYCRYSTALLINE GOLD SPONTANEOUSLY ASSEMBLED FROM SOLUTIONS CONTAINING DIALKYL DISULFIDES OR ALKENETHIOLS," Langmuir, vol. 10, pp. 1825-1831, Jun 1994.
    [7] H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, "STRUCTURE AND BINDING OF ALKANETHIOLATES ON GOLD AND SILVER SURFACES - IMPLICATIONS FOR SELF-ASSEMBLED MONOLAYERS," Journal of the American Chemical Society, vol. 115, pp. 9389-9401, Oct 20 1993.
    [8] A. Ulman, "Formation and structure of self-assembled monolayers," Chemical Reviews, vol. 96, pp. 1533-1554, Jun 1996.
    [9] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chemical Reviews, vol. 105, pp. 1103-1169, Apr 2005.
    [10] Y. N. Xia, X. M. Zhao, and G. M. Whitesides, "Pattern transfer: Self-assembled monolayers as ultrathin resists," Microelectronic Engineering, vol. 32, pp. 255-268, Sep 1996.
    [11] C. Cotton, A. Glidle, G. Beamson, and J. M. Cooper, "Dynamics of the formation of mixed alkanethiol monolayers: Applications in structuring biointerfacial arrangements," Langmuir, vol. 14, pp. 5139-5146, Sep 1 1998.
    [12] I. Taniguchi, K. Toyosawa, H. Yamaguchi, and K. Yasukouchi, "REVERSIBLE ELECTROCHEMICAL REDUCTION AND OXIDATION OF CYTOCHROME-C AT A BIS(4-PYRIDYL) DISULFIDE-MODIFIED GOLD ELECTRODE," Journal of the Chemical Society-Chemical Communications, pp. 1032-1033, 1982 1982.
    [13] J. Y. Huang, D. A. Dahlgren, and J. C. Hemminger, "PHOTOPATTERNING OF SELF-ASSEMBLED ALKANETHIOLATE MONOLAYERS ON GOLD - A SIMPLE MONOLAYER PHOTORESIST UTILIZING AQUEOUS CHEMISTRY," Langmuir, vol. 10, pp. 626-628, Mar 1994.
    [14] X. M. Li, J. Huskens, and D. N. Reinhoudt, "Reactive self-assembled monolayers on flat and nanoparticle surfaces, and their application in soft and scanning probe lithographic nanofabrication technologies," Journal of Materials Chemistry, vol. 14, pp. 2954-2971, Oct 21 2004.
    [15] A. Kumar, H. Joshi, R. Pasricha, A. B. Mandale, and M. Sastry, "Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules," Journal of Colloid and Interface Science, vol. 264, pp. 396-401, Aug 15 2003.
    [16] D. Lair, S. Alexandre, and J. M. Valleton, "Dynamic organization of mixed Langmuir films of glucose oxidase and stearylamine at the air-water interface," Colloids and Surfaces B-Biointerfaces, vol. 45, pp. 200-208, Nov 10 2005.
    [17] J. J. Benitez, S. Kopta, I. Diez-Perez, F. Sanz, D. F. Ogletree, and M. Salmeron, "Molecular packing changes of octadecylamine monolayers on mica induced by pressure and humidity," Langmuir, vol. 19, pp. 762-765, Feb 4 2003.
    [18] O. Albrecht, H. Matsuda, and K. Eguchi, "Main and tilt transition in octadecylamine monolayers," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 284, pp. 166-174, Aug 15 2006.
    [19] M. Puggelli, G. Gabrielli, and G. Caminati, "LANGMUIR-BLODGETT MONOLAYERS AND MULTILAYERS OF STEARIC-ACID AND STEARYL AMINE," Thin Solid Films, vol. 244, pp. 1050-1054, May 15 1994.
    [20] M. Sastry, A. Kumar, and P. Mukherjee, "Phase transfer of aqueous colloidal gold particles into organic solutions containing fatty amine molecules," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 181, pp. 255-259, Jun 15 2001.
    [21] Y. Gao, X. Chen, H. Xu, Y. Zou, R. Gu, M. Xu, et al., "Highly-efficient fabrication of nanoscrolls from functionalized graphene oxide by Langmuir-Blodgett method," Carbon, vol. 48, pp. 4475-4482, Dec 2010.
    [22] L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, "Single-molecule circuits with well-defined molecular conductance," Nano Letters, vol. 6, pp. 458-462, Mar 2006.
    [23] S. Weigelt, J. Schnadt, A. K. Tuxen, F. Masini, C. Bombis, C. Busse, et al., "Formation of trioctylamine from octylamine on Au(111)," Journal of the American Chemical Society, vol. 130, pp. 5388-+, Apr 23 2008.
    [24] E. de la Llave, R. Clarenc, D. J. Schiffrin, and F. J. Williams, "Organization of Alkane Amines on a Gold Surface: Structure, Surface Dipole, and Electron Transfer," Journal of Physical Chemistry C, vol. 118, pp. 468-475, Jan 9 2014.
    [25] C. D. Bain and G. M. Whitesides, "ATTENUATION LENGTHS OF PHOTOELECTRONS IN HYDROCARBON FILMS," Journal of Physical Chemistry, vol. 93, pp. 1670-1673, Feb 23 1989.
    [26] 王振擇, "烷基胺分子於Au(111)電極上之自組裝行為及其單分子膜電化學特性分析," 化學工程學系, 成功大學, 2015.
    [27] M. Osawa, "Surface-enhanced infrared absorption," Near-Field Optics and Surface Plasmon Polaritons, vol. 81, pp. 163-187, 2001 2001.
    [28] A. Bewick, K. Kunimatsu, B. S. Pons, and J. W. Russell, "ELECTROCHEMICALLY MODULATED INFRARED-SPECTROSCOPY (EMIRS) - EXPERIMENTAL DETAILS," Journal of Electroanalytical Chemistry, vol. 160, pp. 47-61, 1984 1984.
    [29] S. Pons, T. Davidson, and A. Bewick, "VIBRATIONAL SPECTROSCOPY OF THE ELECTRODE ELECTROLYTE INTERFACE .4. FOURIER-TRANSFORM INFRARED-SPECTROSCOPY - EXPERIMENTAL CONSIDERATIONS," Journal of Electroanalytical Chemistry, vol. 160, pp. 63-71, 1984 1984.
    [30] S. Ye, T. Ichihara, and K. Uosaki, "Spectroscopic studies on electroless deposition of copper on a hydrogen-terminated Si(111) surface in fluoride solutions," Journal of the Electrochemical Society, vol. 148, pp. C421-C426, Jun 2001.
    [31] H. Miyake, S. Ye, and M. Osawa, "Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry," Electrochemistry Communications, vol. 4, pp. 973-977, Dec 2002.
    [32] M. Osawa, K. Ataka, K. Yoshii, and T. Yotsuyanagi, "SURFACE-ENHANCED INFRARED ATR SPECTROSCOPY FOR IN-SITU STUDIES OF ELECTRODE-ELECTROLYTE INTERFACES," Journal of Electron Spectroscopy and Related Phenomena, vol. 64-5, pp. 371-379, Dec 12 1993.
    [33] J. C. Vickerman, "Surface Analysis-The Principle Techniques," John Wiley & Sons, New York, p. 278, 1997.
    [34] K. A. M. Osawa, K. Yoshii, T.Yotsuyanagi, Y.Nishikawa, "Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles," applied spectroscopy, vol. 47, 1993.
    [35] L. A. Nagahara, T. Ohmori, K. Hashimoto, and A. Fujishima, "EFFECTS OF HF SOLUTION IN THE ELECTROLESS DEPOSITION PROCESS ON SILICON SURFACES," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 11, pp. 763-767, Jul-Aug 1993.
    [36] H. Angersteinkozlowska, B. E. Conway, A. Hamelin, and L. Stoicoviciu, "ELEMENTARY STEPS OF ELECTROCHEMICAL OXIDATION OF SINGLE-CRYSTAL PLANES OF AU .1. CHEMICAL BASIS OF PROCESSES INVOLVING GEOMETRY OF ANIONS AND THE ELECTRODE SURFACES," Electrochimica Acta, vol. 31, pp. 1051-1061, Aug 1986.
    [37] K. Ataka, T. Yotsuyanagi, and M. Osawa, "Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy," Journal of Physical Chemistry, vol. 100, pp. 10664-10672, Jun 20 1996.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE