| 研究生: |
王昱仁 Wang, Yu-Jen |
|---|---|
| 論文名稱: |
棘阿米巴與眼部共生菌之交互作用研究解析 The interaction of Acanthamoeba and ocular commensals |
| 指導教授: |
林威辰
Lin, Wei-Chen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 棘阿米巴 、吞噬作用 、眼表共生菌 、細胞毒性 |
| 外文關鍵詞: | Acanthamoeba, Phagocytosis, Ocular commensal, Cytotoxicity |
| 相關次數: | 點閱:89 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
棘阿米巴是一種常見於環境中並可伺機性感染人類產生致盲性角膜炎的自營性原
蟲。根據過往的研究指出,細菌在被棘阿米巴攝食進入細胞內後,細菌可逃脫消化作
用形成棘阿米巴細胞內共生菌或被消化分解成為食物營養來源。然而,在棘阿米巴入
侵人類眼角膜時,棘阿米巴攝食眼表共生菌對於阿米巴性角膜炎的影響並不清楚。本
研究發現,棘阿米巴透過吞噬作用與眼表共生菌產生的交互作用和阿米巴性角膜炎的
病程具有高度相關性。此外,棘阿米巴引發的細胞外微量元素變化亦可刺激環境常在
菌的致病力提升。首先,我們透過免疫螢光染色與核酸放大實驗證明棘阿米巴可透過
肌動蛋白與SBDS細胞骨架相關蛋白參與的吞噬作用,進而將可做為食物來源的大腸
桿菌吞噬進入細胞體內。在利用16S核醣體RNA定序分析比較不同棘阿米巴分離株的
胞內共生菌組成與含量,發現格蘭氏陽性厭氧菌中的黏液真杆菌含量與阿米巴性角膜
炎的疾病進程有正相關性。再來,我們以細胞毒殺試驗、西方墨點法與小鼠眼球體外
模型,證實在可被消化分解的細菌存在之下,棘阿米巴對上皮細胞連接蛋白和角膜上
皮細胞的破壞都會降低。另外,我們將環境常在的克雷伯氏肺炎菌與棘阿米巴共同培
養後,發現棘阿米巴可在改變環境離子濃度之下,使得克雷伯氏肺炎菌轉型成為高毒
力菌株。此研究成果不僅提供眼表菌相影響阿米巴性角膜炎病程之證據;往後,我們
也將持續探索環境與人體中寄生蟲與細菌之間交互作用對於微生物伺機性感染的影
響。
Acanthamoeba is a free-living protozoa to be found in a wide environment and leading to blindness keratitis in humans. Previous studies indicated that bacteria ingested by Acanthamoeba would escape digestion and become endosymbionts or as a food source to be broken down in the vacuole. However, whether Acanthamoeba hunting the ocular commensals affected Acanthamoeba keratitis progression is still unclear. We demonstrated that ocular microbiota was highly correlated with the severity of Acanthamoeba keratitis based on amoeba’s phagocytosis. Besides, the amoeba could also affect the pathogenicity of environmental flora by changing extracellular ions. First, Escherichia coli as a food source could be ingested by Acanthamoeba through the phagocytosis of actin and SBDS protein. The comparison of endosymbionts between Acanthamoeba isolates by 16S rRNA sequencing showed the relative abundance of Blautia producta is related to the keratitis progression. Afterward, using the cytotoxicity assay, western blotting and mice eyeball ex vivo model demonstrated that microbiota existing could reduce the disruption of epithelial cell junctions and corneal epithelium by Acanthamoeba. In addition, after co-culture of Klebsiella pneumoniae with Acanthamoeba revealed a microenvironmental electrolytes alteration by Acanthamoeba and resulting bacteria transformation into high virulence. Based
on the results, suggest that dysbiosis recovery be used in Acanthamoeba keratitis prevention, and in the future, we will continue to study the interaction between parasites and bacteria in the environment and human body.
1. Marciano-Cabral, F. and G. Cabral, Acanthamoeba spp. as agents of disease in humans. Clinical microbiology reviews, 2003. 16(2): p. 273-307.
2. Lorenzo-Morales, J., et al., Acanthamoeba isolates belonging to T1, T2, T3, T4 and T7 genotypes from environmental freshwater samples in the Nile Delta region, Egypt. Acta tropica, 2006. 100(1-2): p. 63-69.
3. Dendana, F., et al., Free-living amoebae (FLA): detection, morphological and molecular identification of Acanthamoeba genus in the hydraulic system of an
haemodialysis unit in Tunisia. PARASITE-PARIS-, 2008. 15(2): p. 137.
4. Shoff, M., et al., Prevalence of Acanthamoeba and other naked amoebae in South Florida domestic water. Journal of Water and Health, 2008. 6(1): p. 99-104.
5. Walochnik, J., U. Scheikl, and E.M. Haller‐Schober, Twenty years of Acanthamoeba diagnostics in Austria. Journal of Eukaryotic Microbiology, 2015. 62(1): p. 3-11.
6. Siddiqui, R., Y. Aqeel, and N.A. Khan, Killing the Dead: Chemotherapeutic Strategies Against Free‐Living Cyst‐Forming Protists (Acanthamoeba sp. and
Balamuthia mandrillaris). Journal of Eukaryotic Microbiology, 2013. 60(3): p. 291-297.
7. Lorenzo-Morales, J., N.A. Khan, and J. Walochnik, An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite, 2015. 22.
8. Corsaro, D., et al., Acanthamoeba misidentification and multiple labels: redefining genotypes T16, T19, and T20 and proposal for Acanthamoeba micheli sp.
nov.(genotype T19). Parasitology research, 2015. 114(7): p. 2481-2490.
9. Taher, E.E., et al., Acanthamoeba keratitis in noncompliant soft contact lenses users: Genotyping and risk factors, a study from Cairo, Egypt. Journal of infection and public health, 2018. 11(3): p. 377-383.
10. CAST, R.J., Development of an Acanthamoeba‐specific reverse dot‐blot and the discovery of a new ribotype. Journal of Eukaryotic Microbiology, 2001. 48(6): p.609-615.
11. Schuster, F.L. and G.S. Visvesvara, Free-living amoebae as opportunistic and nonopportunistic pathogens of humans and animals. International journal for
parasitology, 2004. 34(9): p. 1001-1027.
12. Booton, G., et al., 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. Journal of Clinical Microbiology, 2002. 40(5): p. 1621-1625.
13. De Jonckheere, J., Epidemiological typing of Acanthamoeba strains isolated from keratitis cases in Belgium. Bulletin de la Société belge d'ophtalmologie, 2003. 287: p. 27-36.
14. Khan, N.A. and T.A. Paget, Molecular tools for speciation and epidemiological studies of Acanthamoeba. Current microbiology, 2002. 44(6): p. 444-449.
15. Walochnik, J., A. Obwaller, and H. Aspöck, Correlations between morphological, molecular biological, and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Applied and Environmental Microbiology, 2000. 66(10): p. 4408-4413.
16. Caumo, K. and M.B. Rott, Acanthamoeba T3, T4 and T5 in swimming-pool waters from Southern Brazil. Acta tropica, 2011. 117(3): p. 233-235.
17. Li, M.L., et al., Treatment of early Acanthamoeba keratitis with alcohol-assisted epithelial debridement. Cornea, 2012. 31(4): p. 442-6.
18. Bowers, B. and E.D. Korn, The fine structure of Acanthamoeba castellanii: I. The Trophozoite. The Journal of cell biology, 1968. 39(1): p. 95-111.
19. Page, F.C., Nackte Rhizopoda und Heliozoea. Protozoenfauna Band, 1991. 2: p. 1-297.
20. Köhsler, M., et al., Acanthamoeba strains lose their abilities to encyst synchronously upon prolonged axenic culture. Parasitology research, 2008. 102(5): p. 1069-1072.
21. Kliescikova, J., J. Kulda, and E. Nohynkova, Stress-induced pseudocyst formation-a newly identified mechanism of protection against organic solvents in Acanthamoebae of the T4 genotype. Protist, 2011. 162(1): p. 58-69.
22. Lloyd, D., Encystment in Acanthamoeba castellanii: a review. Experimental parasitology, 2014. 145: p. S20-S27.
23. Tomlinson, G. and E.A. Jones, Isolation of cellulose from the cyst wall of a soil amoeba. Biochimica et biophysica acta, 1962. 63(1): p. 194-200.
24. CHÁVEZ‐MUNGUÍA, B., et al., Ultrastructural study of encystation and excystation in Acanthamoeba castellanii. Journal of eukaryotic microbiology, 2005.
52(2): p. 153-158.
25. Niederkorn, J.Y., et al., The pathogenesis of Acanthamoeba keratitis. Microbes and Infection, 1999. 1(6): p. 437-443.
26. Garate, M., et al., Cloning and characterization of a novel mannose-binding protein of Acanthamoeba. Journal of Biological Chemistry, 2004. 279(28): p. 29849-29856.
27. Kucknoor, A.S., V. Mundodi, and J.F. Alderete, The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and
episomally expressed AP65. Cellular microbiology, 2007. 9(11): p. 2586-2597.
28. Ringqvist, E., et al., Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Molecular and biochemical parasitology, 2008. 159(2): p. 85-91.
29. Vincensini, L., et al., Proteomic Analysis Identifies Novel Proteins of the Maurer's Clefts, a Secretory Compartment Delivering Plasmodium falciparum Proteins to the Surface of Its Host Cell* S. Molecular & cellular proteomics, 2005. 4(4): p. 582-593.
30. Silverman, J.M., et al., Proteomic analysis of the secretome of Leishmania donovani. Genome biology, 2008. 9(2): p. 1-21.
31. Denet, E., et al., Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitology research, 2017. 116(11): p. 3151-3162.
32. Schulz, F., et al., Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. The ISME journal, 2014. 8(8): p. 1634-1644.
33. Scheid, P., Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms. Parasitology research, 2014. 113(7): p. 2407-2414.
34. Whan, L., I.R. Grant, and M.T. Rowe, Interaction between Mycobacterium avium subsp. paratuberculosis and environmental protozoa. BMC microbiology, 2006. 6(1): p. 1-6.
35. König, L., et al., Symbiont-mediated defense against Legionella pneumophila in amoebae. Mbio, 2019. 10(3): p. e00333-19.
36. Steenbergen, J., H. Shuman, and A. Casadevall, Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proceedings of the National Academy of Sciences, 2001. 98(26): p. 15245-15250.
37. Maumus, F. and G. Blanc, Study of gene trafficking between Acanthamoeba and giant viruses suggests an undiscovered family of amoeba-infecting viruses. Genome biology and evolution, 2016. 8(11): p. 3351-3363.
38. Espinoza-Vergara, G., et al., The impact of protozoan predation on the pathogenicity of Vibrio cholerae. Frontiers in microbiology, 2020. 11: p. 17.
39. Fritsche, T.R., D. Sobek, and R.K. Gautom, Enhancement of in vitro cytopathogenicity by Acanthamoeba spp. following acquisition of bacterial endosymbionts. FEMS microbiology letters, 1998. 166(2): p. 231-236.
40. Badenoch, P.R., et al., Pathogenicity of Acanthamoeba and a Corynebacterium in the rat cornea. Archives of Ophthalmology, 1990. 108(1): p. 107-112.
41. Willcox, M.D., Pseudomonas aeruginosa infection and inflammation during contact lens wear: a review. Optometry and Vision Science, 2007. 84(4): p. 273-278.
42. Bertelli, C. and G. Greub, Lateral gene exchanges shape the genomes of amoebaresisting microorganisms. Frontiers in cellular and infection microbiology, 2012. 2: p. 110.
43. Moliner, C., P.-E. Fournier, and D. Raoult, Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS microbiology reviews, 2010. 34(3): p. 281-294.
44. Suhre, K., Gene and genome duplication in Acanthamoeba polyphaga Mimivirus. Journal of virology, 2005. 79(22): p. 14095-14101.
45. Wang, Z. and M. Wu, Comparative genomic analysis of acanthamoeba endosymbionts highlights the role of amoebae as a “Melting Pot” Shaping the
rickettsiales evolution. Genome biology and evolution, 2017. 9(11): p. 3214-3224.
46. Ogata, H., et al., Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS genetics, 2006. 2(5): p. e76.
47. Schmitz-Esser, S., et al., The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” reveals common mechanisms for host cell interaction
among amoeba-associated bacteria. Journal of bacteriology, 2010. 192(4): p. 1045-1057.
48. Gimenez, G., et al., Insight into cross-talk between intra-amoebal pathogens. BMC genomics, 2011. 12(1): p. 1-14.
49. Chen, C.-H., et al., Characterisation of the β-lactam resistance enzyme in Acanthamoeba castellanii. International journal of antimicrobial agents, 2020. 55(2): p. 105823.
50. Swanson, J.A. and S.C. Baer, Phagocytosis by zippers and triggers. Trends in cell biology, 1995. 5(3): p. 89-93.
51. Alsam, S., et al., Mechanisms associated with Acanthamoeba castellanii (T4) phagocytosis. Parasitology research, 2005. 96(6): p. 402-409.
52. Akya, A., A. Pointon, and C. Thomas, Mechanism involved in phagocytosis and killing of Listeria monocytogenes by Acanthamoeba polyphaga. Parasitology
research, 2009. 105(5): p. 1375-1383.
53. Bouyer, S., et al., Acanthamoeba castellanii: proteins involved in actin dynamics, glycolysis, and proteolysis are regulated during encystation. Experimental parasitology, 2009. 123(1): p. 90-94.
54. Boocock, G.R., et al., Mutations in SBDS are associated with Shwachman–Diamond syndrome. Nature genetics, 2003. 33(1): p. 97-101.
55. Manjasetty, B.A., et al., Structural investigations into Shwachman Bodian diamond syndrome SBDS using a bioinformatics approach. arXiv preprint arXiv:1002.0051, 2010.
56. Orelio, C. and T.W. Kuijpers, Shwachman-Diamond syndrome neutrophils have altered chemoattractant-induced F-actin polymerization and polarization
characteristics. haematologica, 2009. 94(3): p. 409
57. Wessels, D., et al., The Shwachman-Bodian-Diamond syndrome gene encodes an RNA-binding protein that localizes to the pseudopod of Dictyostelium amoebae
during chemotaxis. Journal of cell science, 2006. 119(2): p. 370-379.
58. Kuburich, N.A., N. Adhikari, and J.A. Hadwiger, Acanthamoeba and Dictyostelium use different foraging strategies. Protist, 2016. 167(6): p. 511-525.
59. Clarke, M., et al., Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome biology, 2013. 14(2): p. 1-15.
60. Marchesi, J.R. and J. Ravel, The vocabulary of microbiome research: a proposal. 2015, Springer.
61. Stehr-Green, J.K., T.M. Bailey, and G.S. Visvesvara, The epidemiology of Acanthamoeba keratitis in the United States. American journal of ophthalmology,
1989. 107(4): p. 331-336.
62. Qvarnstrom, Y., et al., Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. Journal of clinical microbiology, 2006. 44(10): p. 3589-3595.
63. Keshav, B.R. and S. Basu, Normal conjunctival flora and their antibiotic sensitivity in Omanis undergoing cataract surgery. Oman journal of ophthalmology, 2012. 5(1): p. 16.
64. Willcox, M.D., Characterization of the normal microbiota of the ocular surface. Experimental eye research, 2013. 117: p. 99-105.
65. Graham, J.E., et al., Ocular pathogen or commensal: a PCR-based study of surface bacterial flora in normal and dry eyes. Investigative ophthalmology & visual science, 2007. 48(12): p. 5616-5623.
66. Grice, E.A., et al., A diversity profile of the human skin microbiota. Genome research, 2008. 18(7): p. 1043-1050.
67. Bonar, E., et al., Human skin microbiota-friendly lysostaphin. International Journal of Biological Macromolecules, 2021.
68. Biswas, K., et al., The nasal microbiota in health and disease: variation within and between subjects. Frontiers in microbiology, 2015. 6: p. 134.
69. Leger, A.J.S., et al., An ocular commensal protects against corneal infection by driving an interleukin-17 response from mucosal γδ T cells. Immunity, 2017. 47(1): p. 148-158. e5.
70. Yli‐Pirilä, T., et al., Effects of co‐culture of amoebae with indoor microbes on their cytotoxic and proinflammatory potential. Environmental Toxicology: An International Journal, 2007. 22(4): p. 357-367.
71. Carter, M.J., A.J. Lobo, and S.P. Travis, Guidelines for the management of inflammatory bowel disease in adults. Gut, 2004. 53(suppl 5): p. v1-v16.
72. Moos, W.H., et al., Microbiota and neurological disorders: a gut feeling. BioResearch open access, 2016. 5(1): p. 137-145.
73. Shin, H., et al., Changes in the eye microbiota associated with contact lens wearing. MBio, 2016. 7(2).
74. Boost, M., P. Cho, and Z. Wang, Disturbing the balance: effect of contact lens use on the ocular proteome and microbiome. Clinical and experimental optometry, 2017. 100(5): p. 459-472.
75. Zhang, H., et al., Conjunctival microbiome changes associated with soft contact lens and orthokeratology lens wearing. Investigative Ophthalmology & Visual Science, 2017. 58(1): p. 128-136.
76. Ithoi, I., et al., Detection of free living amoebae, Acanthamoeba and Naegleria, in swimming pools, Malaysia. Tropical Biomedicine, 2010. 27(3): p. 566-577.
77. Kask, O., et al., Environmental Exposures Influence Nasal Microbiome Composition in a Longitudinal Study of Division I Collegiate Athletes. bioRxiv, 2020.
78. Manguin, S., et al., Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes. Infection, Genetics and Evolution, 2010. 10(2): p. 159-177.
79. Nwachuku, N. and C.P. Gerba, Health effects of Acanthamoeba spp. and its potential for waterborne transmission. Reviews of environmental contamination and toxicology, 2004: p. 93-131.
80. Joslin, C.E., et al., The association of contact lens solution use and Acanthamoeba keratitis. American journal of ophthalmology, 2007. 144(2): p. 169-180. e2.
81. Wyres, K.L. and K.E. Holt, Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Current opinion in microbiology, 2018. 45: p. 131-139.
82. Russo, T.A. and C.M. Marr, Hypervirulent Klebsiella pneumoniae. Clinical microbiology reviews, 2019. 32(3): p. e00001-19.
83. Shon, A.S., R.P. Bajwa, and T.A. Russo, Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence, 2013. 4(2): p. 107-
118.
84. Thomas, V., et al., Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS microbiology reviews, 2010. 34(3): p. 231-259.
85. Berger, P., et al., Ameba-associated microorganisms and diagnosis of nosocomial pneumonia. Emerging infectious diseases, 2006. 12(2): p. 248.
86. Lawlor, M.S., S.A. Handley, and V.L. Miller, Comparison of the host responses to wild-type and cpsB mutant Klebsiella pneumoniae infections. Infection and immunity, 2006. 74(9): p. 5402-5407.
87. Shu, H.-Y., et al., Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. Microbiology, 2009. 155(12): p. 4170-4183.
88. Pan, Y.-J., et al., Capsular types of Klebsiella pneumoniae revisited by wzc sequencing. PloS one, 2013. 8(12): p. e80670.
89. Bushell, S.R., et al., Wzi is an outer membrane lectin that underpins group 1 capsule assembly in Escherichia coli. Structure, 2013. 21(5): p. 844-853.
90. Yu, W.-L., et al., Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clinical infectious diseases, 2006. 42(10): p. 1351-1358.
91. Stout, V., et al., RcsA, an unstable positive regulator of capsular polysaccharide synthesis. Journal of bacteriology, 1991. 173(5): p. 1738-1747.
92. Weisman, R.A., Differentiation in Acanthamoeba castellanii. Annual review of microbiology, 1976. 30(1): p. 189-219.
93. Kicinska, A., et al., ATP-sensitive potassium channel in mitochondria of the eukaryotic microorganism Acanthamoeba castellanii. Journal of Biological
Chemistry, 2007. 282(24): p. 17433-17441.
94. Baig, A.M., et al., Bioinformatic Insights on Target Receptors of Amiodarone in Human and Acanthamoeba castellanii. Infectious disorders drug targets, 2017. 17(3): p. 160-177.
95. Siddiqui, R., et al., Novel insights into the potential role of ion transport in sensory perception in Acanthamoeba. Parasites & vectors, 2019. 12(1): p. 1-8.
96. Kim, J.-Y., et al., Functional expression and characterization of an iron-containing superoxide dismutase of Acanthamoeba castellanii. Parasitology research, 2012. 111(4): p. 1673-1682.
97. Choi, D.-H., et al., Purification and characterization of iron superoxide dismutase and copper–zinc superoxide dismutase from Acanthamoeba castellanii. Journal of Parasitology, 2000. 86(5): p. 899-907.
98. Niyyati, M., et al., Axenic cultivation and pathogenic assays of Acanthamoeba strains using physical parameters. Iranian journal of parasitology, 2013. 8(2): p. 186.
99. Thomas, V., et al., Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Applied and Environmental Microbiology, 2006. 72(4): p. 2428-2438.
100. Shing, B., et al., The antifungal drug isavuconazole is both amebicidal and cysticidal against Acanthamoeba castellanii. Antimicrobial agents and chemotherapy, 2020. 64(5): p. e02223-19.
101. Chen, C.-H., et al., Inhibitory effect of host ocular microenvironmental factors on chlorhexidine digluconate activity. Antimicrobial agents and chemotherapy, 2021. 65(5): p. e02066-20.
102. Sohn, H.-J., et al., Efficient liquid media for encystation of pathogenic free-living amoebae. The Korean journal of parasitology, 2017. 55(3): p. 233.
103. Kato, Y., et al., Rtips: fast and accurate tools for RNA 2D structure prediction using integer programming. Nucleic acids research, 2012. 40(W1): p. W29-W34.
104. Huang, J.-M., et al., Comparative proteomic analysis of extracellular secreted proteins expressed by two pathogenic Acanthamoeba castellanii clinical isolates and a non-pathogenic ATCC strain. Experimental parasitology, 2016. 166: p. 60-67.
105. Huang, J.-M., et al., Pathogenic Acanthamoeba castellanii Secretes the Extracellular Aminopeptidase M20/M25/M40 Family Protein to Target Cells for Phagocytosis by Disruption. Molecules, 2017. 22(12): p. 2263.
106. Anwar, A., et al., Gold nanoparticle-conjugated cinnamic acid exhibits antiacanthamoebic and antibacterial properties. Antimicrobial agents and
chemotherapy, 2018. 62(9): p. e00630-18.
107. Park, S.-M., et al., Production of a polyclonal antibody against inosine-uridine preferring nucleoside hydrolase of Acanthamoeba castellanii and its access to diagnosis of Acanthamoeba keratitis. PloS one, 2020. 15(9): p. e0239867.
108. Pérez, J.M.M. and J. Pascau, Image processing with ImageJ. 2013: Packt Publishing Ltd.
109. Cariello, A.J., et al., Assessment of ocular surface toxicity after topical instillation of nitric oxide donors. Arquivos brasileiros de oftalmologia, 2013. 76: p. 38-41.
110. Omaña-Molina, M., et al., Reevaluating the role of Acanthamoeba proteases in tissue invasion: observation of cytopathogenic mechanisms on MDCK cell monolayers and hamster corneal cells. BioMed research international, 2013. 2013.
111. Ren, M. and X. Wu, Evaluation of three different methods to establish animal models of Acanthamoeba keratitis. Yonsei medical journal, 2009. 51(1): p. 121-127.
112. Altschul, S.F., et al., Basic local alignment search tool. Journal of molecular biology, 1990. 215(3): p. 403-410.
113. Blumenkrantz, N. and G. Asboe-Hansen, New method for quantitative determination of uronic acids. Anal Biochem, 1973. 54(2): p. 484-9.
114. Domenico, P., S. Schwartz, and B.A. Cunha, Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infect Immun, 1989. 57(12): p. 3778-82.
115. González-Robles, A., et al., Acanthamoeba castellanii: identification and distribution of actin cytoskeleton. Experimental parasitology, 2008. 119(3): p. 411-417.
116. Schunder, E., et al., Amino acid uptake and metabolism of Legionella pneumophila hosted by Acanthamoeba castellanii. Journal of Biological Chemistry, 2014. 289(30): p. 21040-21054.
117. Titus, M.A. and H.V. Goodson, An evolutionary perspective on cell migration: Digging for the roots of amoeboid motility. Journal of Cell Biology, 2017. 216(6): p. 1509-1511.
118. Lagmay, J.P., et al., Cytopathogenicity of Acanthamoeba isolates on rat glial C6 cell line. Southeast Asian journal of tropical medicine and public health, 1999. 30(4): p. 670-677.
119. Schuster, F.L. and G.S. Visvesvara, Efficacy of novel antimicrobials against clinical isolates of opportunistic amebas. Journal of Eukaryotic Microbiology, 1998. 45(6): p. 612-618.
120. Huang, J.-M., Y.-T. Chang, and W.-C. Lin, The Biochemical and Functional Characterization of M28 Aminopeptidase Protein Secreted by Acanthamoeba spp. on
Host Cell Interaction. Molecules, 2019. 24(24): p. 4573.
121. Bhat, A.A., et al., Tight junction proteins and signaling pathways in cancer and inflammation: a functional crosstalk. Frontiers in Physiology, 2019. 9: p. 1942.
122. Mohammadpour, M., et al., Antiangiogenic effect of silicate nanoparticles on corneal neo-vascularisation induced by vascular endothelial growth factor. Journal of Medical Hypotheses and Ideas, 2014. 8(1): p. 14-20.
123. Schaumberg, D.A., K.K. Snow, and M.R. Dana, The epidemic of Acanthamoeba keratitis: where do we stand? Cornea, 1998. 17(1): p. 3-10.
124. Weinberger, S.E., B.A. Cockrill, and J. Mandel, Principles of Pulmonary Medicine E-Book. 2017: Elsevier Health Sciences.
125. Carnt, N.A., et al., The relationship between environmental sources and the susceptibility of Acanthamoeba keratitis in the United Kingdom. PloS one, 2020. 15(3): p. e0229681.
126. Sohn, H.-J., et al., The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri. Parasitology research, 2010. 106(4): p. 917-924.
127. Skruber, K., T.-A. Read, and E.A. Vitriol, Reconsidering an active role for G-actin in cytoskeletal regulation. Journal of cell science, 2018. 131(1): p. jcs203760.
128. Garajová, M., et al., Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture. Scientific reports, 2019. 9(1): p. 1-21.
129. Schumann, A. On arithmetic functions in actin filament networks. in 10th EAI International Conference on Bio-Inspired Information and Communications
Technologies. 2017. European Alliance for Innovation (EAI).
130. Guimaraes, A.J., et al., Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiological research, 2016. 193: p. 30-38.
131. Lazuana, T., H. Astuty, and I.P. Sari, Effect of Cellulase Enzyme Treatment on Cyst Wall Degradation of Acanthamoeba sp. Journal of parasitology research, 2019. 2019.
132. Hall, J. and H. Voelz, Bacterial endosymbionts of Acanthamoeba sp. The Journal of parasitology, 1985: p. 89-95.
133. Prévot, A. and H. Boorsma, Au sujet de la fermentation du glucose par Pl. Tetani. Antonie van Leeuwenhoek, 1941. 7(1): p. 239-241.
134. Ma, K., G. Wohlfarth, and G. Diekert, Acetate formation from CO and CO 2 by cell extracts of Peptostreptococcus productus (strain Marburg). Archives of
microbiology, 1991. 156(1): p. 75-80.
135. Eggerth, A.H. and B.H. Gagnon, The bacteroides of human feces. Journal of Bacteriology, 1933. 25(4): p. 389-413.
136. Hamady, Z.Z., et al., Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut, 2010. 59(4): p. 461-469.
137. Ozkan, J., et al., Biogeography of the human ocular microbiota. The ocular surface, 2019. 17(1): p. 111-118.
138. Gorlin, A.I., et al., Effect of adhered bacteria on the binding of Acanthamoeba to hydrogel lenses. Archives of Ophthalmology, 1996. 114(5): p. 576-580.
139. Penland, R.L. and K.R. Wilhelmus, Comparison of axenic and monoxenic media for isolation of Acanthamoeba. Journal of clinical microbiology, 1997. 35(4): p. 915-922.
140. Bottone, E.J., R.M. Madayag, and M.N. Qureshi, Acanthamoeba keratitis: synergy between amebic and bacterial cocontaminants in contact lens care systems as a prelude to infection. Journal of clinical microbiology, 1992. 30(9): p. 2447-2450.
141. Bottone, E., et al., Differential binding capacity and internalisation of bacterial substrates as factors in growth rate of Acanthamoeba spp. Journal of medical microbiology, 1994. 40(2): p. 148-154.
142. Ye, S., et al., Diversity analysis of gut microbiota between healthy controls and those with atopic dermatitis in a Chinese population. The Journal of Dermatology, 2020.
143. Onochie, O.E., et al., The role of hypoxia in Corneal extracellular matrix deposition and cell motility. The Anatomical Record, 2020. 303(6): p. 1703-1716.
144. Ladage, P.M., et al., Effects of rigid and soft contact lens daily wear on corneal epithelium, tear lactate dehydrogenase, and bacterial binding to exfoliated epithelial cells. Ophthalmology, 2001. 108(7): p. 1279-1288.
145. Raksha, L., et al., Comparison of microbiome isolated from the conjunctiva, contact lens and lens storage case of symptomatic and asymptomatic contact lens users. Iranian Journal of Microbiology, 2019. 11(5): p. 349.
146. Nielsen, M.C. and S.C. Jiang, Alterations of the human skin microbiome after ocean water exposure. Marine pollution bulletin, 2019. 145: p. 595-603.
147. Greub, G. and D. Raoult, Microorganisms resistant to free-living amoebae. Clinical microbiology reviews, 2004. 17(2): p. 413-433.
148. Yang, Z., Z. Cao, and N. Panjwani, Pathogenesis of Acanthamoeba keratitis: carbohydrate-mediated host-parasite interactions. Infection and immunity, 1997. 65(2): p. 439-445.
149. Khan, N.A., Acanthamoeba: biology and increasing importance in human health. FEMS microbiology reviews, 2006. 30(4): p. 564-595.
150. Kong, H.-H., T.-H. Kim, and D.-I. Chung, Purification and characterization of a secretory serine proteinase of Acanthamoeba healyi isolated from GAE. Journal of Parasitology, 2000. 86(1): p. 12-17.
151. Alizadeh, H., et al., Apoptosis as a mechanism of cytolysis of tumor cells by a pathogenic free-living amoeba. Infection and immunity, 1994. 62(4): p. 1298-1303.
152. Avery, S.V., J.L. Harwood, and D. Lloyd, Quantification and characterization of phagocytosis in the soil amoeba Acanthamoeba castellanii by flow cytometry. Applied and environmental microbiology, 1995. 61(3): p. 1124-1132.
153. Mantelli, F., J. Mauris, and P. Argüeso, The ocular surface epithelial barrier and other mechanisms of mucosal protection: from allergy to infectious diseases. Current opinion in allergy and clinical immunology, 2013. 13(5).
154. Suzuki, K., et al., Cell–matrix and cell–cell interactions during corneal epithelial wound healing. Progress in retinal and eye research, 2003. 22(2): p. 113-133.
155. Ban, Y., et al., Tight junction-related protein expression and distribution in human corneal epithelium. Experimental eye research, 2003. 76(6): p. 663-669.
156. Tsukita, S., M. Furuse, and M. Itoh, Multifunctional strands in tight junctions. Nature reviews Molecular cell biology, 2001. 2(4): p. 285-293.
157. Mayhew, T., et al., Invited Reviews-Epithelial integrity, cell death and cell loss in mammalian small intestine. Histology and histopathology, 1999. 14(1): p. 257-268.
158. Preston, T.M., H. Richards, and R.S. Wotton, Locomotion and feeding of Acanthamoeba at the water–air interface of ponds. FEMS microbiology letters, 2001. 194(2): p. 143-147.
159. Mermall, V., P.L. Post, and M.S. Mooseker, Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science, 1998. 279(5350): p. 527-533.
160. Michel, R., et al., Acanthamoeba from human nasal mucosa infected with an obligate intracellular parasite. European journal of protistology, 1994. 30(1): p. 104-110.
161. Allen, P.G. and E.A. Dawidowicz, Phagocytosis in Acanthamoeba: I. A mannose receptor is responsible for the binding and phagocytosis of yeast. Journal of cellular physiology, 1990. 145(3): p. 508-513.
162. Kim, J.-H., et al., Functional roles of mannose-binding protein in the adhesion, cytotoxicity and phagocytosis of Acanthamoeba castellanii. Experimental
parasitology, 2012. 132(2): p. 287-292.
163. Mazur, T. and E. Hadaś, The effect of the passages of Acanthamoeba strains through mice tissue on their virulence and its biochemical markers. Parasitology research, 1994. 80(5): p. 431-434.
164. Regué, M., et al., A gene, uge, is essential for Klebsiella pneumoniae virulence. Infection and immunity, 2004. 72(1): p. 54-61.
165. Podschun, R. and U. Ullmann, Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical
microbiology reviews, 1998. 11(4): p. 589-603.
166. Lederman, E.R. and N.F. Crum, Pyogenic liver abscess with a focus on Klebsiella pneumoniae as a primary pathogen: an emerging disease with unique clinical characteristics. Official journal of the American College of Gastroenterology| ACG, 2005. 100(2): p. 322-331.
167. Gorrie, C.L., et al., Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clinical infectious diseases, 2017. 65(2): p. 208-215.
168. Martin, R.M., et al., Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. MSphere, 2016. 1(5): p. e00261-16.
169. Lin, Y.-T., et al., Seroepidemiology of Klebsiella pneumoniae colonizing the intestinal tract of healthy Chinese and overseas Chinese adults in Asian countries. BMC microbiology, 2012. 12(1): p. 1-7.
170. Li, W., et al., Increasing occurrence of antimicrobial-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in China. Clinical infectious diseases, 2014. 58(2): p. 225-232.
171. Liu, Z., et al., Identification and characterization of NDM-1-producing hypervirulent (hypermucoviscous) Klebsiella pneumoniae in China. Annals of laboratory medicine, 2019. 39(2): p. 167-175.
172. Lan, Y., et al., Prevalence of pks gene cluster and characteristics of Klebsiella pneumoniae‐induced bloodstream infections. Journal of clinical laboratory analysis, 2019. 33(4): p. e22838.
173. Liu, C., J. Shi, and J. Guo, High prevalence of hypervirulent Klebsiella pneumoniae infection in the genetic background of elderly patients in two teaching hospitals in China. Infection and drug resistance, 2018. 11: p. 1031.
174. Saliba, K.J., et al., Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Nature, 2006. 443(7111): p. 582-585.
175. Valle-Solis, M., et al., A calcium/cation exchanger participates in the programmed cell death and in vitro virulence of Entamoeba histolytica. Frontiers in cellular and infection microbiology, 2018. 8: p. 342.
176. Wu, C.-C., et al., IscR regulation of capsular polysaccharide biosynthesis and ironacquisition systems in Klebsiella pneumoniae CG43. PloS one, 2014. 9(9): p. e107812.
177. Casewell, M. and I. Phillips, Hands as route of transmission for Klebsiella species. Br Med J, 1977. 2(6098): p. 1315-1317.
178. Davis, T.J. and J.M. Matsen, Prevalence and characteristics of Klebsiella species: relation to association with a hospital environment. Journal of Infectious Diseases, 1974. 130(4): p. 402-405.
179. Rock, C., et al., Frequency of Klebsiella pneumoniae Carbapenemase (KPC)–producing and Non-KPC-producing klebsiella species contamination of healthcare
workers and the environment. Infection Control & Hospital Epidemiology, 2014. 35(4): p. 426-429.
180. Fung, C., et al., A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut, 2002. 50(3): p. 420-424.
181. Lee, I.R., et al., Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population. Scientific reports, 2016. 6(1): p. 1-12.
182. Yeh, K.-M., et al., Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. Journal of clinical microbiology, 2007. 45(2): p. 466-471.
183. Fung, C.-P., et al., A 5-year study of the seroepidemiology of Klebsiella pneumoniae: high prevalence of capsular serotype K1 in Taiwan and implication for vaccine efficacy. Journal of Infectious Diseases, 2000. 181(6): p. 2075-2079.