簡易檢索 / 詳目顯示

研究生: 李柏儀
Li, Po-Yi
論文名稱: 雲製造服務之自動化建置機制研發
Development of Automated Mechanism for Constructing Cloud Manufacturing Services (AMCCS)
指導教授: 陳朝鈞
Chen, Chao-Chun
共同指導教授: 洪敏雄
Hung, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 97
中文關鍵詞: 智慧靈活製造維修與供應鏈軟體中介軟體及編程環境
外文關鍵詞: Intelligent and Flexible Manufacturing, Manufacturing, Maintenance and Supply Chains, Software, Middleware and Programming Environments
相關次數: 點閱:124下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雲製造至今的出現已成為了下一個世代的製造典範,其具有能為製造產業帶來新革命的潛力,在進一步推廣雲製造的議題中,如何以有效率的方式自動化建置雲製造服務儼然成為了一個必要且具有挑戰的項目。
    現今在許多有關雲製造的文獻中,尚未出現針對如何自動化建置雲製造服務為議題主軸的相關文獻,因此,本論文以促進快速建置雲製造服務為目標,提出了一個新型的雲製造服務自動化建置策略(ACSCMS)。首先,本論文將開發ACSCMS的三階段工作流來清楚定義出將單機軟體程式庫(SSLP)自動化建構成雲製造服務所會遇到的議題;接著,在本論文系統架構的部分將描述如何實現ACSCMS所需的系統架構,並針對系統的核心元件的設計細節進行詳細的解說;最後,ACSCMS將應用於工業案例,並於智慧製造平台上建置AVM雲端服務與IYM雲端服務,其測試結果展示了ACSCMS在上傳所需的單機軟體程式庫後,能以非常有效率的方式自動化建置雲製造服務。
    因此,ACSCMS不僅可以大大減輕工程師在人工建置雲製造服務的負擔,反而還能幫助雲製造服務的推廣,本論文所提出的ACSCMS與其詳細設計能為開發雲製造服務的業者作為一個很有用的參考依據。

    Cloud manufacturing (CMfg) has emerged as a nextgeneration manufacturing paradigm which has potential to revolutionize the manufacturing industry. In further promotion of CMfg, how to build CMfg services in an automatic and efficient manner is an essential and challenging subject. Currently, no literature has addressed the issues of how to automatically construct CMfg services. Aimed at facilitating rapid construction of CMfg services, this paper proposes a novel automated construction scheme for developing CMfg services (called ACSCMS). FMirst, a three-phase workflow of ACSCMS is developed to clearly address the issues of how to automatically construct CMfg services using standalone software library package (SSLP). Next, a system architecture of ACSCMS is designed to delineate how to implement ACSCMS. Then, the designs of ACSCMS’s core components are depicted in details. Finally, ACSCMS is applied to conduct industrial case studies to build the AVM cloud service and IYM cloud service for a smart manufacturing platform. Testing results demonstrate that ACSCMS can automatically construct the target CMfg services in a very efficient manner after uploading the required SSLPs. Thus, ACSCMS can significantly alleviate the burden of engineers in building CMfg services and in turn to help the promotion of CMfg. The proposed ACSCMS, together with its detailed designs, can serve as a useful reference for practitioners in developing CMfg systems.

    摘 要 II 誌 謝 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 研究流程 5 1.4 論文架構 6 第二章 文獻探討與理論基礎 7 2.1 技術文獻探討 7 2.1.1 Azure Machine Learning Studio比較 7 2.2 相關理論基礎 8 2.2.1 雲製造服務開發技術之探討 8 2.2.2 現行以Java開發RESTful網路服務的常見方式 10 2.2.3 現行以C#開發RESTful網路服務的常見方式 11 2.2.4 JSON資料格式 12 第三章 系統架構 14 3.1 功能需求分析 14 3.2 設計原理 15 3.3 製造服務建置器 18 3.3.1 使用者圖形化介面 18 3.3.2 關鍵資訊萃取器 18 3.3.3 網路服務專案產生器 18 3.3.4 服務建置器 19 3.3.5 軟體庫 19 3.4 製造服務管理器 19 3.4.1 服務管理器 19 3.4.2 服務資訊資料庫 20 第四章 核心機制設計 21 4.1 通用化機制之開發基礎 21 4.1.1 雲製造服務之手動開發基本概念 21 4.1.2 手動開發雲製造服務所需之基本步驟 22 4.1.3 手動撰寫雲製造服務原始碼所需之關鍵參數 23 4.2 雲製造服務之軟體包解析機制 27 4.2.1 Jar軟體包之結構分析 28 4.2.2 Dll軟體包之結構分析 29 4.2.3 程式庫軟體包之通用解析機制設計 30 4.2.4 程式庫軟體包之程式庫資訊檔設計 31 4.2.5 服務介面資訊檔之設計 33 4.3 雲製造服務之自動化建置機制 36 4.3.1 雲製造服務之自動化建置機制的流程設計 36 4.3.2 Java-based雲製造服務自動化建置機制 39 4.3.3 C#-based雲製造服務自動化建置機制 54 4.3.4 POST Web API其輸入參數的格式設計 69 4.4 雲製造服務之管理機制設計 70 4.4.1 服務資訊資料庫之資料表設計 73 4.4.2 雲製造服務之自動佈署流程設計 74 4.4.3 雲製造服務之自動卸載流程設計 75 第五章 案例呈現&驗證不同程式庫軟體自動化建置機制 77 5.1 程式庫軟體之自動化建置流程 77 5.2 實現與驗證AVM雲製造服務的自動化建置展示 79 5.3 實現與驗證MC雲製造服務的自動化建置展示 83 5.4 實現與驗證IYM雲製造服務的自動化建置展示 86 5.5 雲製造服務之建置效率比較 92 第六章 結論 95 6.1 總結 95 6.2 未來研究方向 95 參考文獻 96

    [1] Y.-C. Lin, M.-H. Hung, H.-C. Huang, C.-C. Chen, H.-C. Yang, Y.-S. Hsieh, et al., "Development of Advanced Manufacturing Cloud of Things (AMCoT)-A Smart Manufacturing Platform," IEEE Robotics and Automation Letters, 2017.
    [2] D. Ivanov, A. Dolgui, B. Sokolov, F. Werner, and M. Ivanova, "A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0," International Journal of Production Research, vol. 54, pp. 386-402, 2016.
    [3] 經濟部工業局. (2014). 從Industry 4.0看台灣生產力推升的契機.
    [4] 產業情報研究所(MIC). (2015). 工業4.0智慧工廠未來發展趨勢與商機.
    [5] X. Xu, "From cloud computing to cloud manufacturing," Robotics and Computer-Integrated Manufacturing, vol. 28, pp. 75-86, 2// 2012.
    [6] D. Wu, D. W. Rosen, L. Wang, and D. Schaefer, "Cloud-based Manufacturing: Old Wine in New Bottles?," Procedia CIRP, vol. 17, pp. 94-99, // 2014.
    [7] L. Ren, L. Zhang, L. Wang, F. Tao, and X. Chai, "Cloud manufacturing: key characteristics and applications," International Journal of Computer Integrated Manufacturing, pp. 1-15, 2014.
    [8] F. Tao, Y. Cheng, L. Da Xu, L. Zhang, and B. H. Li, "CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system," IEEE Transactions on Industrial Informatics, vol. 10, pp. 1435-1442, 2014.
    [9] C.-C. Chen, Y.-C. Lin, M.-H. Hung, C.-Y. Lin, Y.-J. Tsai, and F.-T. Cheng, "A novel cloud manufacturing framework with auto-scaling capability for the machining industry," International Journal of Computer Integrated Manufacturing, vol. 29, pp. 786-804, 2016.
    [10] H.-C. Huang, Y.-C. Lin, M.-H. Hung, C.-C. Tu, and F.-T. Cheng, "Development of cloud-based automatic virtual metrology system for semiconductor industry," Robotics and Computer-Integrated Manufacturing, vol. 34, pp. 30-43, 2015.
    [11] M.-H. Hung, Y.-Y. Li, Y.-C. Lin, C.-F. Wei, H.-C. Yang, and F.-T. Cheng, "Development of a novel cloud-based multi-tenant model creation service for automatic virtual metrology," Robotics and Computer-Integrated Manufacturing, vol. 44, pp. 174-189, 2017.
    [12] F.-T. Cheng, H. Tieng, H.-C. Yang, M.-H. Hung, Y.-C. Lin, C.-F. Wei, et al., "Industry 4.1 for wheel machining automation," IEEE Robotics and Automation Letters, vol. 1, pp. 332-339, 2016.
    [13] C. Jatoth, G. Gangadharan, and R. Buyya, "Computational intelligence based QoS-aware web service composition: A systematic literature review," IEEE Transactions on Services Computing, vol. 10, pp. 475-492, 2017.
    [14] I. Paik, W. Chen, and M. N. Huhns, "A scalable architecture for automatic service composition," IEEE Transactions on Services Computing, vol. 7, pp. 82-95, 2014.
    [15] P. Wang, Z. Ding, C. Jiang, M. Zhou, and Y. Zheng, "Automatic web service composition based on uncertainty execution effects," IEEE Transactions on Services Computing, vol. 9, pp. 551-565, 2016.
    [16] R. Barga, V. Fontama, W. H. Tok, and L. Cabrera-Cordon, Predictive analytics with Microsoft Azure machine learning: Springer, 2015.
    [17] R. Perrey and M. Lycett, "Service-oriented architecture," in Applications and the Internet Workshops, 2003. Proceedings. 2003 Symposium on, 2003, pp. 116-119.
    [18] R. Fielding, "Representational state transfer," Architectural Styles and the Design of Netowork-based Software Architecture, pp. 76-85, 2000.

    下載圖示 校內:2022-09-14公開
    校外:2022-09-14公開
    QR CODE