| 研究生: |
曹惠雯 Tsao, Hui-Wen |
|---|---|
| 論文名稱: |
以第一原理研究金屬奈米粒子吸附對氧化物與二維材料電子結構之影響 First-Principles Study on Electronic Structure of Metal Nanoparticle Adsorption on Oxides and Two-dimensional Material |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 共同指導教授: |
關肇正
Kaun, Chao-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 第一原理計算 、異質結構 、氧化物 、二硒化鎢 、金屬奈米粒子 |
| 外文關鍵詞: | first-principles calculation, heterostructure, oxides, WSe2, noble metal nanoparticle |
| 相關次數: | 點閱:158 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以第一原理計算探討異質介面最穩定的介面結構、電子結構與電子傳輸的過程,其主要分為三個部分進行探討。
第一部份為金屬奈米粒子與氧化物半導體結合形成異質結構,其中氧化物有氧化鋅(ZnO)、氧化鋅錫(ZTO)與二氧化鈦(TiO2),金屬奈米粒子為Ag13、Au13與Pt13。根據吸附能計算結果說明金屬奈米粒子吸附於氧化物為穩定異質結構;以電子結構而言,所有的異質結構NP/ZnO(002)、NP/ZTO(001)、NP/TiO2(001)與NP/TiO2(101)中,金屬奈米粒子會使原本半導體性質的本質氧化物轉變為導體性質,其中NP/TiO2(001) 與NP/TiO2(101) 會有自旋極化及磁性現象;而電荷轉移方面主要發生在NP與氧化物介面之間,NP/ZnO(002)與NP/TiO2(001)的穿隧能譜相較於本質的氧化物會有較高的穿隧係數,NP/ZTO(001)與NP/TiO2(101)系統穿隧係數則下降。
第二部份為不同尺寸的金奈米粒子Au13、Au38與Au62與二硒化鎢(WSe2)結合,分別將金奈米粒子與WSe2優化後,藉由調控吸附距離分別計算出Au13 / WSe2,Au38 / WSe2和Au62 / WSe2系統的最穩定的吸附距離為4.5、6.25和6.5Å,其相對應的吸附能分別為-5.05,-6.20和-10.29 eV;在金奈米粒子吸附下,WSe2從p型轉變為本徵或n型半導體,在費米能級附近存在許多平帶,平帶由金原子所產生;並藉由機械學習在不同的吸附距離和金奈米粒子尺寸下預測能量值與費米能量的電子狀態。
第三部份為Au13與MgP分子吸附於WSe2,計算出MgP/WSe2與Au13/ WSe2異質結構的吸附能分別為-1.78與-7.40 eV,為穩定異質結構;與本質WSe2的相比,在電子結構方面MgP會影響靠近費米面的價帶與導帶的能帶形狀並產生稍微平坦的能帶,Au13吸附會使本質的WSe2原本為p型半導體能帶移動接近本質半導體,Au13則在WSe2能隙中貢獻局域性較高的電子狀態,MgP/WSe2與Au13/ WSe2其能態密度電子自旋向上與自旋向下形狀皆為對稱,不具有磁性行為;在電性傳輸部分,MgP/WSe2在導帶區間穿隧係數相較於本質WSe2有增加,Au13/WSe2對於導帶和價帶區間的穿隧係數皆下降。WSe2、MgP/WSe2 與Au13/ WSe2系統在能量大於1.25 eV偏振光的照射下會產生光電流,WSe2在線偏振光的作用下左電極的與右電極所接收到的電子流為等量,而自旋流在自旋向上與自旋向下則為不等量,而在左右旋偏振光的照射下,左右電極所接收到的電子流為不等量,其自旋流在自旋向上與自旋向下則為不等量;MgP/WSe2 與Au13/WSe2系統在線偏振與圓偏振光的照射下,左右電極所接收到的電子流與自旋流皆為不等量。
Nanoparticles exhibiting quantum confinement effects are an ideal model system for studying the basic physical and chemical properties of nanostructure materials. When nanoparticles are supported on oxides or low dimensional materials, the interaction between the nanoparticles and the surface will affect the pristine performance of these materials and adjust their behavior. In this work, we investigate the geometric structures, electronic and transport properties of NP/oxides and Aun/WSe2 heterostructures based on first-principles calculation. In NP/oxides system, compared with pristine oxides, Ag13/ZnO, Au13/ZnO and Pt13/ZnO systems have more density of states at the Fermi level. However, the density of states of Ag13/ ZTO and Au13/ ZTO and Pt13/ZTO systems at the Fermi level are declining. When the NPs are adsorbed on the TiO2, spin polarization occurs. According to transmission spectrums, NP/ZnO(002) and NP/TiO2(001) systems have higher transmission coefficient than pristine oxide. Therefore, in NP/ZTO(001) and NP/TiO2(101) systems, they have a lower transmission coefficient than pristine oxide. As different sizes of gold nanoparticle absorb on the WSe2 monolayer transforms from a p-type to an intrinsic semiconductor, with few flat band around the Fermi level, which can reduce its conductance. Au adsorbs through the conduction and valence band intervals, the transmission coefficients are declining.
[1] G. Yang, "Interfacial properties of calcium montmorillonite in aqueous solutions: Density functional theory and classical molecular dynamics studies on the electric double layer," KTH Royal Institute of Technology, (2017).
[2] K. Gong et al., "Electric control of spin in monolayer WSe2 field effect transistors," Nanotechnology, 25 (2014) 435201.
[3] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, "Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides," ACS nano, 8 (2014) 1102-1120.
[4] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, "Recent development of two-dimensional transition metal dichalcogenides and their applications," Materials Today, 20 (2017) 116-130.
[5] N. Tiwari, A. Nirmal, M. R. Kulkarni, R. A. John, and N. Mathews, "Enabling high performance n-type metal oxide semiconductors at low temperatures for thin film transistors," Inorganic Chemistry Frontiers, 7 (2020) 1822-1844.
[6] H. Fang et al., "Degenerate n-doping of few-layer transition metal dichalcogenides by potassium," Nano letters, 13 (2013) 1991-1995.
[7] Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, "Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting," Nano letters, 13 (2013) 14-20.
[8] D. Wang, Z.-P. Liu, and W.-M. Yang, "Revealing the size effect of platinum cocatalyst for photocatalytic hydrogen evolution on TiO2 support: A DFT study," ACS Catalysis, 8 (2018) 7270-7278.
[9] G. L. Cardoso and P. C. Piquini, "Theoretical investigation of the anchoring and activity of a gold cluster on two-dimensional substrates," Materials Research Express, 6 (2019) 075069.
[10] V. Postica et al., "Tuning ZnO Sensors Reactivity toward Volatile Organic Compounds via Ag Doping and Nanoparticle Functionalization," ACS applied materials & interfaces
11 (2019) 31452-31466.
[11] X. Lu, L. Guo, P. Wang, M. Cui, D. Kanghong, and W. Peng, "Theoretical investigation of the adsorption of gas molecules on WSe2 monolayers decorated with Pt, Au nanoclusters," Applied Surface Science, (2020) 145860.
[12] E. Schrödinger, "An undulatory theory of the mechanics of atoms and molecules," Physical review, 28 (1926) 1049.
[13] V. Fock, "Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems," Zeitschrift für Physik, 61 (1930) 126-148.
[14] J. C. Slater, "A simplification of the Hartree-Fock method," Physical review, 81 (1951) 385.
[15] E. Fermi, "Un metodo statistico per la determinazione di alcune priorieta dell’atome," Rend. Accad. Naz. Lincei, 6 (1927) 602-607.
[16] L. H. Thomas, "The calculation of atomic fields," in Mathematical Proceedings of the Cambridge Philosophical Society, 23 (1927) 542-548.
[17] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Physical review, 136 (1964) B864.
[18] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Physical review, 140 (1965) A1133.
[19] I. N. Levine, D. H. Busch, and H. Shull, Quantum chemistry. Pearson Prentice Hall Upper Saddle River, NJ, (2009).
[20] D. M. Ceperley and B. J. Alder, "Ground state of the electron gas by a stochastic method," Physical review letters, 45 (1980) 566.
[21] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Physical review A, 38 (1988) 3098.
[22] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical review letters, 77 (1996) 3865.
[23] Y. V. Nazarov, Y. Nazarov, and Y. M. Blanter, Quantum transport: introduction to nanoscience. Cambridge university press, (2009).
[24] J. Taylor, H. Guo, and J. J. P. R. B. Wang, "Ab initio modeling of quantum transport properties of molecular electronic devices," Physical Review B, 63 (2001) 245407.
[25] "Nanodcal Theory by Nano Academic Technologies Inc."
[26] J. Taylor, H. Guo, and J. Wang, "Ab initio modeling of quantum transport properties of molecular electronic devices," Physical Review B, 63 (2001) 245407.
[27] 黃莉雯, "以第一原理計算胜肽分子之導電性質變化" (2015)
[28] M. C. Payne, M. P. Teter, D. C. Allan, T. Arias, and a. J. Joannopoulos, "Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients," Reviews of modern physics, 64 (1992) 1045.
[29] R. Kubo, "Electronic properties of metallic fine particles. I," J Journal of the Physical Society of Japan, 17 (1962) 975-986.
[30] J. Chou, C. Hsing, C. Wei, C. Cheng, and C. Chang, "Ab initio random structure search for 13-atom clusters of fcc elements," Journal of Physics: Condensed Matter, 25 (2013) 125305.
[31] A. S. Barnard, "Direct comparison of kinetic and thermodynamic influences on gold nanomorphology," Accounts of chemical research, 45 (2012) 1688-1697.
[32] N. Watari and S. Ohnishi, "Atomic and electronic structures of Pd 13 and Pt 13 clusters," Physical Review B, 58 (1998) 1665.
[33] J. L. G. Fierro, Metal oxides: chemistry and applications. CRC press, 2005.
[34] P. A. Cox, Transition metal oxides: an introduction to their electronic structure and properties. Oxford university press, (2010).
[35] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature 432 (2004) 488-492.
[36] M. K. Jayaraj, K. J. Saji, K. Nomura, T. Kamiya, and H. Hosono, "Optical and electrical properties of amorphous zinc tin oxide thin films examined for thin film transistor application," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 26 (2008) 495-501.
[37] J. F. Wager, B. Yeh, R. L. Hoffman, D. A. J. C. O. i. S. S. Keszler, and M. Science, "An amorphous oxide semiconductor thin-film transistor route to oxide electronics," Current Opinion in Solid State and Materials Science, 18 (2014) 53-61.
[38] Y. Han, C.-j. Liu, and Q. Ge, "Interaction of Pt clusters with the anatase TiO2 (101) surface: A first principles study," 110 (2006) 7463-7472.
[39] A. Walsh, Y. Yan, M. N. Huda, M. M. Al-Jassim, and S.-H. Wei, "Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals," Chemistry of Materials, 21 (2009) 547-551.
[40] Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, and Y. Li, "Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting," Advanced Energy Materials, 7 (2017) 1700555.
[41] P. Salvador, "Hole diffusion length in n‐TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis," Journal of applied physics, 55 (1984) 2977-2985.
[42] G. Fiori et al., "Electronics based on two-dimensional materials," Nature nanotechnology, 9 (2014) 768.
[43] C. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, "Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors," Applied Physics Letters, 103 (2013) 053513.
[44] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature nanotechnology, 7 (2012) 699.
[45] X.-L. Fan, Y. Yang, P. Xiao, and W.-M. Lau, "Site-specific catalytic activity in exfoliated MoS 2 single-layer polytypes for hydrogen evolution: basal plane and edges," Journal of Materials Chemistry A, 2 (2014) 20545-20551.
[46] X. Fan, S. Wang, Y. An, and W. Lau, "Catalytic activity of MS2 monolayer for electrochemical hydrogen evolution," The Journal of Physical Chemistry C, 120 (2016) 1623-1632.
[47] Q. Yu, W. Shan, and H. Wang, "Theoretical design of sandwich two-dimensional structures for photocatalysts and nano-optoelectronic devices," Journal of materials science, 53 (2018) 8274-8284.
[48] S. Kumar and U. Schwingenschlogl, "Thermoelectric response of bulk and monolayer MoSe2 and WSe2," Chemistry of Materials, 27 (2015) 1278-1284.
[49] C. Ataca, H. Sahin, and S. Ciraci, "Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure," The Journal of Physical Chemistry C, 116 (2012) 8983-8999.
[50] W. S. Yun, S. Han, S. C. Hong, I. G. Kim, and J. Lee, "Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X 2 semiconductors (M= Mo, W; X= S, Se, Te)," Physical Review B, 85 (2012) 033305.
[51] H. Sahin et al., "Anomalous Raman spectra and thickness-dependent electronic properties of WSe2," 87 (2013) 165409.
[52] P. Tonndorf et al., "Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2," Optics express, 21 (2013) 4908-4916.
[53] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, "High-performance single layered WSe2 p-FETs with chemically doped contacts," J Nano letters, 12 (2012) 3788-3792.
[54] D. Yang, X. Fan, F. Zhang, Y. Hu, and Z. Luo, "Electronic and Magnetic Properties of Defected Monolayer WSe2 with Vacancies," Nanoscale research letters, 14 (2019) 1-9.
[55] K. F. Mak, K. He, J. Shan, and T. F. Heinz, "Control of valley polarization in monolayer MoS 2 by optical helicity," Nature nanotechnology, 7 (2012) 494-498.
[56] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, "Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides," Physical review letters, 108 (2012) 196802.
[57] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, "Valley polarization in MoS 2 monolayers by optical pumping," Nature nanotechnology, 7 (2012) 490-493.
[58] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, "High-performance single layered WSe2 p-FETs with chemically doped contacts," Nano letters, 12 (2012) 3788-3792.
[59] C.-H. Chen et al., "Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration," 2D Materials, 1 (2014) 034001.
[60] D. Sarkar et al., "Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing," Nano letters, 15 (2015) 2852-2862.
[61] F. Caruso, "Nanoengineering of particle surfaces," Advanced materials, 13 (2001) 11-22.
[62] M. Fernandez, A. Bilić, and A. S. J. N. Barnard, "Machine learning and genetic algorithm prediction of energy differences between electronic calculations of graphene nanoflakes," Nanotechnology, 28 (2017) 38LT03.
[63] F. H.-F. Leung, H.-K. Lam, S.-H. Ling, and P. K.-S. Tam, "Tuning of the structure and parameters of a neural network using an improved genetic algorithm," IEEE Transactions on Neural networks, 14 (2003) 79-88.
[64] G. P. Pun, R. Batra, R. Ramprasad, and Y. J. N. c. Mishin, "Physically informed artificial neural networks for atomistic modeling of materials," Nature communications, 10 (2019) 2339.
[65] X. Zheng, P. Zheng, and R.-Z. J. C. s. Zhang, "Machine learning material properties from the periodic table using convolutional neural networks," Chemical science, 9 (2018) 8426-8432.
[66] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. J. N. Walsh, "Machine learning for molecular and materials science," Nature, 559 (2018) 547-555.
[67] W. Huang, P. Martin, and H. L. J. A. M. Zhuang, "Machine-learning phase prediction of high-entropy alloys," Acta Materialia, 169 (2019) 225-236.
[68] H. Chan, K. Sasikumar, S. Srinivasan, M. Cherukara, B. Narayanan, and S. Sankaranarayanan, "Machine learning a bond order potential model to study thermal transport in WSe2 nanostructures," Nanoscale, 11 (2019) 10381-10392.
[69] K. Kim, L. Ward, J. He, A. Krishna, A. Agrawal, and C. J. P. R. M. Wolverton, "Machine-learning-accelerated high-throughput materials screening: Discovery of novel quaternary Heusler compounds," Physical Review Materials, 2 (2018) 123801.
[70] P. V. J. C. M. S. Balachandran, "Machine learning guided design of functional materials with targeted properties," Computational Materials Science, 164 (2019) 82-90.
[71] R. Jinnouchi and R. J. T. j. o. p. c. l. Asahi, "Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm," Journal of Physical Chemistry Letters, 8 (2017) 4279-4283.
[72] K. Choudhary and F. J. C. M. S. Tavazza, "Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations," Computational Materials Science, 161 (2019) 300-308.
[73] W. Li et al., "Efficient corrections for DFT noncovalent interactions based on ensemble learning models," Journal of chemical information and modeling, 59 (2019) 1849-1857.
[74] B. C. Yeo, D. Kim, C. Kim, and S. S. J. S. r. Han, "Pattern learning electronic density of states," Scientific reports, 9 (2019) 1-10.
[75] G. Kant and K. S. J. P. C. Sangwan, "Predictive modelling and optimization of machining parameters to minimize surface roughness using artificial neural network coupled with genetic algorithm," Procedia Cirp, 31 (2015) 453-458.
[76] S. Bahrami, F. D. Ardejani, and E. J. J. o. H. Baafi, "Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine," Journal of Hydrology, 536 (2016) 471-484.
[77] G. Kresse and J. Furthmüller, "Vienna ab-initio simulation package (vasp)," Vienna: Vienna University, (2001).
[78] S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. Sutton, "Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study," Physical Review B, 57 (1998) 1505.
[79] L. G. Ferreira, M. Marques, and L. K. Teles, "Approximation to density functional theory for the calculation of band gaps of semiconductors," Physical Review B, 78 (2008) 125116.
[80] Ü. Özgür et al., "A comprehensive review of ZnO materials and devices," Journal of applied physics
98 (2005) 11.
[81] H. Dixit, R. Saniz, D. Lamoen, and B. Partoens, "Accurate pseudopotential description of the GW bandstructure of ZnO," Computer Physics Communications, 182 (2011) 2029-2031.
[82] X. Y. Deng, G. H. Liu, X. P. Jing, and G. S. Tian, "On‐site correlation of p‐electron in d10 semiconductor zinc oxide," International Journal of Quantum Chemistry, 114 (2014) 468-472.
[83] K. Harun, M. K. Yaakob, M. F. M. Taib, B. Sahraoui, Z. A. Ahmad, and A. A. Mohamad, "Efficient diagnostics of the electronic and optical properties of defective ZnO nanoparticles synthesized using the sol–gel method: experimental and theoretical studies," Materials Research Express, 4 (2017) 085908.
[84] H. Wang, H. Huang, and B. Wang, "First-principles study of structural, electronic, and optical properties of ZnSnO3," Solid state communications, 149 (2009) 1849-1852.
[85] M. N. Mullings, C. Hägglund, J. T. Tanskanen, Y. Yee, S. Geyer, and S. F. Bent, "Thin film characterization of zinc tin oxide deposited by thermal atomic layer deposition," Thin Solid Films, 556 (2014) 186-194.
[86] C.-X. Huang et al., "Characterization of dual-target co-sputtered novel Hf-doped ZnSnO semiconductors and the enhanced stability of its associated thin film transistors," Journal of Alloys and Compounds, 681 (2016) 81-87.
[87] T. Zhu and S.-P. Gao, "The stability, electronic structure, and optical property of TiO2 polymorphs," The Journal of Physical Chemistry C, 118 (2014) 11385-11396.
[88] N. Watari and S. J. P. R. B. Ohnishi, "Atomic and electronic structures of Pd 13 and Pt 13 clusters," Physical Review B, 58 (1998) 1665.
[89] K. Li, B. Peng, and T. J. A. C. Peng, "Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels," ACS Catalysis, 6 (2016) 7485-7527.
[90] X. Han, Q. Kuang, M. Jin, Z. Xie, and L. J. J. o. t. A. C. S. Zheng, "Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties," Journal of the American Chemical Society, 131 (2009) 3152-3153.
[91] A. Sihag et al., "DFT Insights into Comparative Hydrogen Adsorption and Hydrogen Spillover Mechanisms of Pt4/Graphene and Pt4/Anatase (101) Surfaces," The Journal of Physical Chemistry C, 123 (2019) 25618-25627.
[92] M. Yu and D. R. Trinkle, "Accurate and efficient algorithm for Bader charge integration," The Journal of chemical physics, 134 (2011) 064111.
[93] Y. Yamaguchi, A new dimension to quantum chemistry: analytic derivative methods in ab initio molecular electronic structure theory. Oxford University Press, USA, (1994).
[94] F. J. P. i. S. S. Tautz, "Structure and bonding of large aromatic molecules on noble metal surfaces: The example of PTCDA," Progress in Surface Science, 82 (2007) 479-520.
[95] A. A. Bakulin et al., "The role of driving energy and delocalized states for charge separation in organic semiconductors," Science, 335 (2012) 1340-1344.
[96] J. Rawson, P. J. Angiolillo, and M. J. Therien, "Extreme electron polaron spatial delocalization in π-conjugated materials," Proceedings of the National Academy of Sciences, 112 (2015) 13779-13783.
[97] J. E. Lennard-Jones, "Cohesion," Proceedings of the Physical Society, 43 (1931) 461.
[98] J. Graser, S. K. Kauwe, and T. D. Sparks, "Machine learning and energy minimization approaches for crystal structure predictions: A review and new horizons," Chemistry of Materials, 30 (2018) 3601-3612.
[99] T. Cao et al., "Valley-selective circular dichroism of monolayer molybdenum disulphide," Nature communications 3 (2012) 1-5.
[100] K. F. Mak, K. He, J. Shan, and T. F. Heinz, "Control of valley polarization in monolayer MoS2 by optical helicity," Nature nanotechnology, 7 (2012) 494-498.
[101] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. J. P. r. l. Yao, "Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides," Physical review letters, 108 (2012) 196802.
[102] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, "Valley polarization in MoS2 monolayers by optical pumping," Nature nanotechnology, 7 (2012) 490-493.
[103] L. E. Henrickson, "Nonequilibrium photocurrent modeling in resonant tunneling photodetectors," Journal of applied physics, 91 (2002) 6273-6281.
校內:2025-08-01公開