簡易檢索 / 詳目顯示

研究生: 朱盈蒨
Chu, Ying-Chien
論文名稱: 運用電鍍金機制於發光二極體之電極與晶片貼合技術之研製
Investigation and fabrication of electroplating Au for bump-pad and die-bond on light emitting diodes
指導教授: 蘇炎坤
Su, Yan-kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 117
中文關鍵詞: 電鍍電極晶片貼合散熱發光二極體
外文關鍵詞: bonding, heat dissipation, pad, Au, LED, electroplating
相關次數: 點閱:63下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著固態照明演進至此,以發光二極體 (LEDs) 取代傳統白熾燈泡的瓶頸主要仍在價格昂貴和有效的散熱管理等方面。本論文中以我們研究團隊所研發出的電鍍技術,相較於傳統的電子槍蒸鍍模式,電鍍具有快速、節省成本等優勢。是故引進電鍍技術的用意,在於降低成本、改善製程等。由實驗的結果顯示,使用電鍍金於發光二極體 (LEDs)之電極,其成本大幅的降低,約可節省 69.8% 的金屬成本,而製程時間更可減少約 74.2%,且其光電特性皆沒有改變。關於電鍍和傳統電子槍蒸鍍模式的元件光電特性、及成本分析,我們將在論文中做詳細的探討比較。
    再者以我們研究團隊所研發出的封裝技術,搭配電鍍金和電鍍錫技術,製成不需膠體而可將發光二極體和金屬支架直接接合的元件,此舉除了可降低元件的串聯熱阻,延長元件壽命之外,也進而使元件的操作電流提升。由實驗的結果顯示,使用電鍍之金錫合金為固晶膠體之元件,其操作電流皆有所提升,而亮度也隨著操作電流提升而跟著增加,相較於採用傳統固晶膠體之元件,其亮度提升約 17.13 % 且輸出功率提升約 23.27 %。且因為有效的熱排除使得晶片表面溫度大幅降低,這個現象可由元件的半高寬窺知一二。關於以金錫合金為固晶膠封裝的元件和傳統模式的元件之光電特性的比較,將在後面的論文中做詳細的探討比較。

    With the development of solid-state lighting, the chief bottlenecks of traditional incandescent lamps replaced with light emitting diodes (LEDs) were problem of cost down and effective heat dissipation management. In this paper, our group developed the electroplating technology. Comparing with traditional e-gun evaporation, it has predominance that the advantages of electroplating technology are simple process and cost down, etc. The experimental result shows that the LED device prepared by electroplating gold on pad would reduce cost about 69.8% and save the process time about 74.2% but the other optical and electro- characteristics would not be changed. The comparisons of optical and electro- characteristics and cost property between electroplating and traditional E-gun evaporation were discussed later in this thesis.
    Following, our group presents the package with electroplating gold and electroplating tin technologies. By this method, the LEDs chip would be connected with lead frame directly without any epoxy. It not only reduces the series thermal resistances greatly but also extends the device lifetime. Moreover, the operation current also increases. The experiment result shows that the operation current of device with Au/Sn solder prepared by electroplating acts higher, the luminous intensity improves about 17.13 % and the output power enhances about 23.27 %. The FWHM of device decreases obviously because of the effective heat dissipation. The comparisons of electro- and optical characteristics between package with Au/Sn solder and traditional one were discussed later.

    Contents Abstract (In Chinese)-------------------------------------I Abstract (In English)-----------------------------------III Acknowledgement (In Chinese)------------------------------V Contents------------------------------------------------VII Table Captions--------------------------------------------X Figure Captions------------------------------------------XI Chapter 1 Introduction------------------------------------1 1-1 Development of Solid-State Lighting-----------------1 1-1-1 Condensed History of Solid-State Lighting-----------1 1-1-2 Progress of Light-Emitting Diode--------------------4 1-2 Application of Light Emitting Diodes----------------7 1-3 Background of this Thesis and Motivation------------8 1-4 Thesis Direction and Skeleton----------------------11 Chapter 2 Brief Principles of LED------------------------15 2-1 Introduction of LEDs------15 2-2 Principle of Package------18 2-3 Basic of Thermal Resistance------20 2-4 Electroplating Technology------22 2-4-1 Introduction of Electroplating Au------22 2-4-2 Mechanism of Electroplating Au------25 2-4-3 Electroplating Apparatus------26 2-5 Technology of Eutectic Solder------27 Chapter 3 Experiment------37 3-1 Process to Fabricate LED------37 3-1-1 Structure of GaN LED------37 3-1-2 Structure of AlGaInP LED------38 3-2 Process to Fabricate LED with Electroplating Au------39 3-2-1 For GaN LED------39 3-2-2 For AlGaInP LED------40 3-3 Process to fabricate sequential electroplating Au-Sn solder------41 3-4 Conventional package of LEDs------42 Chapter 4 Results and Discussion------46 4-1 Electroplating Gold Film Research------46 4-1-1 Material Quality------46 4-1-2 Component Analysis and Mechanical Property------47 4-1-3 Summary------48 4-2 Electroplating Gold on LED------49 4-2-1 For GaN LED------49 4-2-2 For AlGaInP LED------50 4-2-3 Summary------51 4-3 Deepen Pad of LED with Electroplating Au------52 4-3-1 Motivation------52 4-3-2 Optical and Electrical Characteristics------53 4-3-3 Summary------54 4-4 Replacement of partial Au with Ag------55 4-4-1 Motivation------55 4-4-2 Optical and Electrical Characteristics------55 4-4-3 Summary------56 4-5 Bonding the Chips with Au-Sn Solder------57 4-5-1 Motivation------57 4-5-2 Optical and Electrical Characteristics------57 4-5-3 Summary------59 Chapter 5 Conclusion and Future Prospect------94 5-1 Conclusion------94 5-2 Future Prospect------94 Reference------95 Table Captions Table 1-1 SSL-LED roadmap recommendations.------12 Table 2-1 Basic comparisons of three mechanisms to form metallic film.------29 Table 2-2 The comparisons for various solders.------29 Table 2-3 The arrangement of application fields of electroplating Au.------30 Table 2-4 The arrangement of application fields of Au-Sn solder.------31 Table 4-1 The results after shear force testing with E-gun and electroplating gold on glass substrate.--------------60 Table 4-2 The results after shear force testing with E-gun and electroplating gold on GaN LED.----------------------60 Table 4-3 The results after shear force testing with E-gun and electroplating gold on AlGaInP LED.------------------61 Table 4-4 The results after shear force testing with conventional and deepen pad on GaN LED.------------------61 Table 4-5 The physical property of metallic Au and Ag.---62 Table 4-6 The results after shear force testing with E-gun Au and Ag on GaN LED.---62 Table 4-7 The cost property of E-gun Au, Ag comparing with electroplating Au.------63 Figure Captions Fig.1-1 Evolution of luminous efficiency for various lighting technologies.------13 Fig.1-2 The energy bandgap versus lattice constant relationships.------13 Fig.1-3 The evolution of LED luminous performance for III-V compound semiconductors.------14 Fig.1-4 The trend of applications for LEDs in the future.------14 Fig.2-1 P-N junction under (a) zero bias and (b) forward bias.------32 Fig.2-2 Light radiation as the result of electron-hole re-combinations.------32 Fig.2-3 Band diagram of MQW with a forward voltage.------33 Fig.2-4 Graphic representation of the components of thermal resistance.------33 Fig.2-5 Schematic mechanism of e-beam evaporation.------34 Fig.2-6 Schematic mechanism of sputtering.------34 Fig.2-7 Schematic mechanism of electroless-plating Au.------35 Fig.2-8 Schematic mechanism of electro-plating Au.------35 Fig.2-9 The electrochemical reaction of electroplating Au.------36 Fig.2-10 The phase diagram and composition information of eutectic Au-Sn solder.---36 Fig.3-1 The structure of schematic wafer and chip form of GaN LED.------44 Fig.3-2 The flow chart of AlGaInP LED.------44 Fig.3-3 The flow chart of sequential electroplating Au-Sn solder.------45 Fig.4-1 The relation of thickness of electroplating gold film to deposition time.------64 Fig.4-2 The relation of deposition rate of electroplating gold film to plating temperature.------64 Fig.4-3 The surface morphology of (a) E-gun gold, (b) Electroplating gold, (c) Electroplating gold with higher rate by CCD.------65 Fig.4-4 The surface morphology of electroplating gold by SEM.------66 Fig.4-5 The cross section SEM image for electroplating gold film prepared by 75˚C for 10 minutes.------66 Fig.4-6 The cross section SEM image for electroplating gold film prepared by 75˚C for 15 minutes.------67 Fig.4-7 The cross section SEM image for electroplating gold film prepared by 75˚C for 25 minutes.------67 Fig.4-8 EDS result for electroplating gold film prepared by 75˚C for 3 minutes.------68 Fig.4-9 The SEM image of bonding gold sphere on the pad.------68 Fig.4-10 (a) Schematic diagram of shear force testing, (b) optical image before bonding, (c) schematic and optical representation of possible results after shear force testing.---69 Fig.4-11 The adhesion curves of devices with E-gun gold and electroplating gold on glass substrate.------70 Fig.4-12 The surface morphology of electroplating gold on GaN LED by CCD and SEM.------70 Fig.4-13 EDS result for electroplating gold film on GaN LED.------71 Fig.4-14 The adhesion curves of devices with E-gun gold and electroplating gold on GaN LED.------71 Fig.4-15 The I-V curve of Cr/Pt/electroplating Au on GaN LED.------72 Fig.4-16 The L-I curve of Cr/Pt/electroplating Au on GaN LED.------72 Fig.4-17 The peak wavelength of Cr/Pt/electroplating Au on GaN LED.------73 Fig.4-18 The full width at half maximum of Cr/Pt/electroplating Au on GaN LED.---73 Fig.4-19 The output power of Cr/Pt/electroplating Au on GaN LED.------74 Fig.4-20 The surface morphology of device with E-gun and electroplating gold on AlGaInP LED by CCD.------74 Fig.4-21The adhesion curves of devices with E-gun gold and electroplating gold on AlGaInP LED.------75 Fig.4-22 The I-V curve of Cr/Pt/electroplating Au on AlGaInP LED.------75 Fig.4-23 The L-I curve of Cr/Pt/electroplating Au on AlGaInP LED.------76 Fig.4-24 The peak wavelength of Cr/Pt/electroplating Au on AlGaInP LED.------76 Fig.4-25 The full width at half maximum of Cr/Pt/electroplating Au on AlGaInP LED.------77 Fig.4-26 The output power of Cr/Pt/electroplating Au on AlGaInP LED.------77 Fig.4-27 The surface morphologies of p-GaN and n-GaN.------78 Fig.4-28 The four types of pads’ discrepancy by CCD.------79 Fig.4-29 The profile of pad with (a) conventional E-gun Au, (b)electroplating Au by CCD.------79 Fig.4-30 The adhesion curves of devices of deepen pad with electroplating gold on GaN LED.------80 Fig.4-31 AFM 2D image of electroplating gold for 20 seconds on glass substrate.------80 Fig.4-32 AFM 2D image of electroplating gold for 30 seconds on glass substrate.------81 Fig.4-33 AFM 2D image of electroplating gold for 45 seconds on glass substrate.------81 Fig.4-34 AFM 2D image of electroplating gold for 60 seconds on glass substrate.------82 Fig.4-35 The roughness electroplating gold film versus deposition time with various temperature.------82 Fig.4-36 The I-V curve of Cr/Pt/Au/electroplating Au on GaN LED.------83 Fig.4-37 The L-I curve of Cr/Pt/Au/electroplating Au on GaN LED.------83 Fig.4-38 The peak wavelength of Cr/Pt/Au/electroplating Au on GaN LED.------84 Fig.4-39 The full width at half maximum of Cr/Pt/Au/electroplating Au on GaN LED.---84 Fig.4-40 The output power of Cr/Pt/Au/electroplating Au on GaN LED.------85 Fig.4-41 The pads' design with (a) and (b), and the surface morphology of these two pad as (c) and (d) by CCD.------86 Fig.4-42 The adhesion curves of devices with E-gun Au and E-gun Ag on GaN LED.------87 Fig.4-43 The I-V curve of E-gun Ag on GaN LED.------87 Fig.4-44 The L-I curve of E-gun Ag on GaN LED.------88 Fig.4-45 The peak wavelength of E-gun Ag on GaN LED.------88 Fig.4-46 The full width at half maximum of E-gun Ag on GaN LED.------89 Fig.4-47 The output power of E-gun Ag on GaN LED.------89 Fig.4-48 The thickness versus deposition time of electroplating Sn film under room temperature.------90 Fig.4-49 The cross section view of (a) bare chip and (b) the chip with Au-Sn solder by CCD.------90 Fig.4-50 The I-V curve of device with Au-Sn solder on LED.------91 Fig.4-51 The L-I curve of device with Au-Sn solder on LED.------91 Fig.4-52 The peak wavelength of device with Au-Sn solder on LED.------92 Fig.4-53 The full width at half maximum of device with Au-Sn solder on LED.------92 Fig.4-54 The output power of device with Au-Sn solder on LED.------93

    [01] Jeff Y. Tsao, “Solid state lighting-lamps, chips, and materials for tomorrow”, IEEE Circuits & Devices magazine, Vol. 20, pp. 28-37, May (2004).
    [02] E. Fred Schubert, and Jong Kyu Kim, “Solid-state light source getting smart”, Science, Vol. 308, 27, pp. 13-18, May (2005).
    [03] Daniel D. Evans, Jr., “High brightness matrix LED assembly challenges and solutions”, Electronic Components and Technology Conference, pp. 1704-1708, (2008).
    [04] A. Bergh, M. G. Craford, Craford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting”, Physics Today 54, pp. 42-47, (2001).
    [05] Michael R. Krames, Oleg B. Shchekin, Regina Mueller-Mach, Gerd O. Mueller, Ling Zhou, Gerard Harbers, and M. George Craford, “Status and future of high-power light-emitting diodes for solid-state lighting”, Journal of Display Technology, Vol. 3, NO. 2, pp. 160-175, June (2007).
    [06] Henry Joseph Round, “A Note on Carborundum,” Electrical World 49, 309, (1907).
    [07] E. Fred Schubert, “ Light-Emitting Diodes”, second edition, pp. 1-16, (2006).
    [08] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films”, Jpn. J. Appl. Phys., vol. 31, pp. L139-L142, (1992).
    [09] H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., vol. 48, pp. 353-355, (1986).
    [10] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada and T. Mukai, “Ultra-High Efficiency White Light Emitting Diodes”, Jap. J. Appl. Phys., vol. 45, no. 41, pp. L1084-L1086, (2006).
    [11] Volker Harle, “High brightness III/V-Nritride based light emitting diodes”, Osram, (2005).
    [12] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-heating in high-power AlGaN-GaN HFET’s”, IEEE Electron Device Letters, Vol. 19, NO. 3, March (1998).
    [13] Hyun-Ho Kim , Sang-Hyun Choi, Sang-Hyun Shin, Young-Ki Lee, Seok-Moon Choi, Sung Yi, “Thermal transient characteristics of die attach in high power LED PKG”, Microelectronics Reliability , Vol.48, pp. 445–454, (2008).
    [14]http://acept.la.asu.edu/courses/phs110/expmts/exp13a.html
    [15] E. Fred Schubert, “Light Emitting Diodes and Solid-state Lighting”, HANDBOOK, pp. 13-16.
    [16] http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/
    [17] Chia-Yuan, Lee, “A novel high brightness and thermal stable internal omni-directional reflective layer for AlGaInP LED”, NCKU, Industrial Technology R&D Master Thesis, Semiconductor and Optoelectronic manufacturing, Department of Electrical Engineering, January (2007).
    [18] M. Fukuda, “Optical semiconductor devices”, Wily Interscience Publication, (1999).
    [19] E. F. Schubert, “Light-emitting diodes”, Cambridge University Press, pp. 431-436, (2003).
    [20] Georg Bogner, AlexandraDebray, and Dr. Klaus Horn, “High
    Performance Epoxy Casting Resin for SMD-LED Packaging”, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 3938, pp. 249-261, (2000).
    [21] C. A. May, in Epoxy Resins Chemistry and Technology, 2nd Edition, Marcel Dekker, Inc., New York, Base, (1988).
    [22] J. S. Vrentas, C. M. Vrentas, “Prediction of mutual diffusion coefficients for polymer-solvent systems”, J. Appl. Polym. Sci., Vol. 77 , pp. 1431, (1999).
    [23] M. R. Vanlandingham, R. F. Eduijee, J. W. Gillespie Jr., J. Appl.
    Polym. Sci., Vol. 71, pp. 787, (1999).
    [24] Kelvin Shih, “LED Junction Temperature Test Unit-Operating Manual”, Acorn Technology, (2003).
    [32] Agilent Technologies, Application Note 1005, (1999).
    [33] H.J. De Los Santos, “RF MEMS Circuit Design for Wireless Communications”, Artech House, London, (2002).
    [34] S. Michaelis, H.J. Timme, M. Wycisk, J. Binder, “Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transportation applications”, J. Micromech. Microeng., Vol. 10, pp. 120-123, (2000).
    [35] W. Ruythooren, K. Attenborough, S. Beerten, P. Merken, J. Fransaer, E. eyne, C. Van Hoof, J.D. Boeck, J.P. Celis, “lectrodeposition for the synthesis of Microsystems”, J. Micromech. Microeng., Vol. 10, pp. 101-107, (2000).
    [36] http://www.ferrotec.com/technology/electronbeam/
    [37]http://www.etafilm.com.tw/PVD_Thermal_Evaporation_Deposition_ch.html
    [38]http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch3.htm
    [39] http://www.etafilm.com.tw/PVD_Sputtering_Deposition_ch.html
    [40] Y. Okinaka and M. Hoshino, “Some recent topics in gold plating for electronics applications” Gold Bull., Vol. 31(1), 3, (1998).
    [41] T. E. Dinan and H. Y. Cheh, “The effect of arsenic upon the hardness of electrodeposited gold”, J. Electrochem. Soc., Vol. 139(2), pp. 410, (1992).
    [42] E.Smalbrugge, B.Jacobs, S.Falcone, E.J.Geluk, and F.Karouta, “Electroplating of Gold using a Sulfite-based Electrolyte”, Proceedings symposium IEEE/LEOS Benelux chapter, 143, (2000).
    [43] M. J. Liew, S. Roy, and K. Scott, “Development of a non-toxic electrolyte for soft gold electrodeposition: an overview of work at University of Newcastle upon Tyne”, Royal society of chemistry, Green Chemistry, Vol. 5, pp. 376-379, (2003).
    [44] Kai Wang, Rozalia Beica, and Neil Brown, “Soft gold electroplating from a non-cyanide bath for electronic applications”, IEEE/SEMI Int’1 electronics manufacturing technology symposium, Vol. 10, pp.242-246, (2004).
    [45] Takayuki Fujita, Suguru Nakamichi, Sunao Ioku, Kazusuke Maenaka, Yoichiro Takayama, “Seedlayer-less gold electroplating on silicon surface for MEMS applications”, ELSEVIER, Sensors and Actuators A, Vol. 135, pp.50-57, (2007).
    [46] J.W. KIM, Y.C. LEE, and S.B. JUNG, “Reliability of conductive adhesives as a Pb-free alternative in Flip-Chip applications”, Journal of Electronic Materials, Vol. 37, No.1, 9,(2008).
    [47] E. T. Eisenmann, “Electrodeposition of hard golds – a hypothesis to explain its special features”, Gold Bulletin, Vol. 11, (4), pp. 132-133, (1978).
    [48] Hunziker, W., Voyt, W. and Melchior, H., “Low cost packaging of semiconductor laser arrays using passive self-aligned flip-chip techniques on Si motherboards”, Proc. of the 1996 IEEE 46th Electronie Components and Technology Conference, Vol. 19, pp. 8-12, May (1996).
    [49] Tsai JY, Chang CW, Shieh YC, Hu YC, Kao CR, “Controlling the microstructures from the gold-tin reaction”, J Electron Mater, Vol.34, pp. 182-187, (2005).
    [50] Djurfors B, Ivey DG , “Microstructural characterization of pulsed electrodeposited Au/Sn alloy thin films”, Mater Science Engineering B, Vol.90, pp. 309-320, (2002).
    [51] H.G. SONG,1 J.P. AHN, and J.W. MORRIS, Jr., “The microstructure of eutectic Au-Sn solder bumps on Cu/Electroless Ni/Au”, Journal of electronic materials, Vol.30, No.9, pp. 1083-1087, (2001).
    [52] Pin J. Wang, Jong S. Kim, and Chin C. Lee, “Fluxless bonding of silicon chips to ceramic packages using electroplated Au/Sn/Au structure”, IEEE Advanced packaging materials symposium, Vol.12 pp. 41-45, (2007).
    [53] Jeong-Won Yoon, Hyun-Suk Chun, Ja-Myeong Koo, and Seung-Boo Jung, “Au–Sn flip-chip solder bump for microelectronic and optoelectronic applications”, Microsyst Technol, Vol.13, pp. 1463-1469, (2007).
    [54] Jeong-Won Yoon, Hyun-Suk Chun, Bo-In Noh, Ja-Myeong Koo, Jong-Woong Kim, Hoo-Jeong Lee, and Seung-Boo Jung, “Mechanical reliability of Sn-rich Au–Sn/Ni flip chip solder joints fabricated by sequential electroplating method”, ELSEVIER, Microelectronic reliability, Vol.48, pp. 1857-1863, (2008).
    [55] J.W. Ronnie Teo, F.L. Ng, L.S. Kip Goi, Y.F. Sun, Z.F. Wang, X.Q. Shi, J. Wei, and G.Y. Li, “Microstructure of eutectic 80Au/20Sn solder joint in laser diode package”, ELSEVIER, Microelectronic engineering, Vol.85, pp. 512-517, (2008).
    [56] R. R. Tummala, “Fundamentals of Microsystems Packaging”,
    McGraw-Hill, New York, (2001).

    下載圖示 校內:2019-07-01公開
    校外:2019-07-01公開
    QR CODE